Japan Car

Version complète : [FAQ Nissan] Nissan SR20DE
Vous consultez actuellement la version basse qualité d’un document. Voir la version complète avec le bon formatage.
petit post regroupant tout se qui conerne le moteur 2.0l de chez nissan équipant les :

- 100nx GTI
- Almera GTI
- Primera GT (P10, P11)
- Sunny GTI

  • général
  • fiche technique de tous les sr20de
  • guide d'entretien du sr20de
  • schema ecu sr20de
  • coupe moteur et couple de serrage
  • passer en mode diagnostic
  • codes erreurs de l'ecu
  • probléme de débimetre

    préparation
  • réglage de l'avance a l'allumage
  • pose et reglage d'un SAFC sur sr20de
  • CAI, silencieux, collecteur, AAC, reprog tester au banc
  • info AAC pour SR20
  • Préparation JWT (Jim Wolf Tech.) pour le SR20DE(anglais)
  • explicatif complet de quoi faire et avec quelles pieces pour booster le sr20de
  • FAQ des pieces pour sr20de (anglais)
  • prépa du sr20de(anglais)
  • AAC de P10gt sur une P11 testé sur un banc
fiche technique de tous les sr20de par tibo
CARACTERISTIQUES MOTEUR :
  • MODELE SR20DE
  • Alèsage Course 86*86

  • Cylindrée 1998

  • Ordre d’allumage 1-3-4-2

  • Régime Ralenti 850

  • Calage de L’allumage 15°

  • Bougies NGK
    Chaud BKR5EY
    Normal BKR6EY
    Froid BKR7EY

  • Ecartement des électrodes des bougies 0.8 à 0.9


  • Dimension de la courroie d'alternateur 14.24*830
    avec la clim 21.36*1.035

    un recapitulatif des different sr20de existant en france

  • sr20de black top: 143ch a 6400tr et 18.2mkg a 4800tr (sunny, almera 100nx , primera gt P11 evo)

  • sr20de red top : 150ch a 6100tr et 18.2mkg a 4800tr (primera gt P10)

  • sr20de : 150ch a 6300tr et 18.5mkg a 4800tr (primera GT p11)
guide d'entretien du sr20de par tibo

RODAGE D’UN SR20DE :

Au cours des 1600 premiers km :
- Ne pas rouler à plus de 110km/h et ne pas dépasser 4000tr/min. Eviter de conduire à vitesse constante pendant une longue période.
- Ne pas accélérer plein gaz sur un rapport.
- Eviter les démarrages rapides et de faire glisser l’embrayage.
- Eviter les freinages brutaux.
- Ne pas tirer de remorque sur les premiers 800km.

BOUGIES D’ALLUMAGE :

Les bougies d’allumage ont été montées en usine et sont conçues pour assurer un fonctionnement normal dans des conditions de conduites normales. Si le véhicule est utilisé dans une des conditions ci-dessous il est conseiller de poser des bougies de valeur thermique appropriée :
- Quand le véhicule sert à de petits trajets et que le moteur n’a pas le temps de chauffer suffisamment il est recommandé d’utiliser des bougies chaudes.
- Quand le véhicule est conduit avec le papillon de gaz régulièrement ouvert en grand sur de long parcours, il est recommander d’utiliser des bougies froides.

COUPLE DE SERRAGE DES ROUES :

98 à 118 N/m ( 10 à 12 kg/m)

VIDANGE DU LIQUIDE DE REFROIDISSEMENT :

1. Pousser le levier du chauffage à fond vers la droite.
2. Ouvrir le bouchon de radiateur. Relâcher la valve de purge d’air. Détacher la coupelle du flexible inférieur du radiateur. Déposer le flexible. Ouvrir le bouchon de vidange du bloc-moteur.
3. Ouvrir le bouchon de décharge d’air pour vidanger le liquide de refroidissement.
4. Rincer le circuit de refroidissement en introduisant un boyau d’arrosage dans le radiateur.
5. Poser la durit inférieure.
6. Faire lentement le plein du radiateur jusqu’à ce que le liquide déborde de l’orifice du bouchon de vidange.
7. Fermer le bouchon de vidange. Faire lentement le plein du radiateur jusqu’à ce que le liquide déborde de l’orifice du bouchon de décharge d’air et la valve de la purge d’air.
8. Fermer le bouchon de décharge d’air et la valve de la purge d’air. Faire lentement le plein du radiateur jusqu’au repère « MAX » du réservoir. Fermer le bouchon du radiateur.
9. Faire démarrer le moteur et le laisser chauffer jusqu’à sa température normale de fonctionnement. Monter assez haut dans les tours à 3 ou 4 reprises sans vitesse enclenchées. S’assurer que le témoin de température du liquide de refroidissement n’indique pas de surchauffe.
10. Arrêter le moteur, attendre qu’il se refroidisse et remplir le radiateur jusqu’au goulot de remplissage. Remplir jusqu’au repère « MAX ».
11. Vérifier que la durite inférieure du radiateur et le bouchon de vidange ne présente pas de fuite.

VIDANGE DE L’HUILE-MOTEUR :

1. Placer un récipient approprié sous le bouchon de vidange.
2. Enlever le bouchon de remplissage d’huile.
3. Enlever le bouchon de vidange avec une clé et vidanger l’huile complètement.
4. Nettoyer et reposer le bouchon de vidange et poser une nouvelle rondelle. Serrer le bouchon de vidange. Couple de serrage du bouchon de vidange : 29 à 39 N/m ( 3 à 4 kg/m)
5. Remplir le carter avec l’huile et remettre le bouchon de remplissage en place.
6. Démarrer le moteur
7. Arrêter le moteur et attendre quelques minutes. Vérifier le niveau de l’huile avec la jauge.

REMPLACEMENT DU FILTRE A HUILE :

1. Desserrer le filtre à huile avec la clé. Enlever le filtre en tournant à la main.
2. Essuyer le surface de fixation du filtre à huile moteur. Enlever toute trace de joint sur la surface de portée au moteur.
3. Enduire le caoutchouc du filtre neuf de l’huile restante sur le caoutchouc de l’ancien filtre.
4. Visser le filtre en place jusqu’à ce qu’une légère résistance soit sentie. Serrer ensuite de 2/3 de tour a la main.
5. Démarrer le moteur et s’assurer que le filtre ne coule pas.
6. Arrêter le moteur et attendre quelques minutes. Vérifier de nouveau le niveau d’huile.

REMPLACEMENT DES BOUGIES D’ALLUMAGES :

1. Retirer autant de collier qu’il le faut pour faciliter l’accès aux câbles de haute tension et aux bougies d’allumage.
2. Dégager le câbles des bougies. Toujours tenir la bougie et non le câble. Marquer les câbles afin de pouvoir les remettre à leur place initiale.
3. Retirer les bougies avec un embout à bougie. L’embout est muni d’une rondelle en caoutchouc qui sert à maintenir la bougie lorsqu’elle est retirée. Vérifier que la bougie est bien coincée dans l’embout.
4. Vérifier l’écartement des bougies neuves avec une jauge d’épaisseur.
5. Introduire les bougies dans l’embout. Poser l’ensemble sur le moteur. Sécuriser au couple spécifié avec l’embout à bougie. Couple de serrage des bougies : 20 à 29 N/m ( 2 à 3 kg/m ).
6. Maintenir ma bougie, introduire chaque câble de haute tension dans la bougie et pousser jusqu’à entendre un léger claquement.
7. Reposer tous les colliers nécessaires.

PUISSANCES DES DIFFERENTES AMPOULES :

Clignotants avant 21W
Clignotants latéraux 5W
Feu de position avant 5W
Clignotants arrière 21W
Feu de stop 21W
Feu arrière 5W
Phare de recul 21W
Antibrouillard avant 55W
Antibrouillard arrière 21W
Eclaire plaque minéralogique 5W
Plafonnier 10W
Eclairage de carte 10W
Eclairage du coffre 3.4W

CARBURANTS ET LUBRIFIANTS RECOMMANDES ET CONTENANCES :

TYPE CONTENANCE LUBRIFIANTS

Réservoir 60litres

Huile-moteur
-Avec filtre à huile SR20DI/SR20DE 3.4L API SF ou SG1
-Sans filtre à huile SR20DI/SR20DE 3.2L
Circuit de refroidissement
-avec réservoir SR20DI 6.4L
SR20DE 6.5L antigel à base de glyco
-réservoir 0.7L éthilénique

Liquide du circuit de freinage DOT 4

Graisse universelle NLGI N°2


CARBURANT :

Essence sans plomb ayant un indice d’octane d’au moins 95 (RON).

HUILE :

Pour les pays froids et chauds :
7.5W30 est préférable
Pour les pays chauds :
20W-40 et 20W-50 conviennent
l’huile 5W20 n’est pas recommandée pour la conduite soutenue à hauts régimes.
Huile selon température extérieure :
Température Huile
-10 à –30 5W20
15 à –30 5W30
15 à –20 10W
40 à –20 7.5W30, 10W40, 10W50, 15W40, 15W50
-10 à 40 20W20, 20W40, 20W50
schéma ecu sr20depar tibo

schéma ecu sr20de
passer en mode diagnostic par jobi
Il existe un mode de diagnostique qui permet de transformer l'indicateur "check engine" en indicateur de richesse...Enfin,aussi utile que cela puisse être avec une lambda d'origine...

Comment on fait?
Ben comme pour mettre le boitier en diag normal:
- contact (check engine s'allume)
- court circuitage de deux bornes de la prise diag
- check engine s'éteint
- démarrer
- enlever le fil de fer qui fait court circuit

Et là selon le régime,la diode "check engine" se met à clignoter...plus ou moins vite.

Quand elle est allumée,ça veut dire "pauvre"...et éteint c'est riche.
Vous verez bien qu'en elle clignote donc en permanence puisque le boitier corrige en permanence


les deux broches de la prise diag à connecter via un trombonne ou un bout de fil de fer,ce sont celles qui sont sur la rangée du haut,les deux le plus à droite...Normalement pour les repérer c'est simple,celles de la rangée du dessous sont vides (pas de broches sur les deux de droite en bas)
pr remetre a zero le mod diag il suffit d’etaindre le moteur



ps: si la voiture n est pas catalyse ou alors que vous avez virer la sonde lambda ce qu il ne faut pas faire le mode richesse est impossible
codes erreurs de l'écupar tibo
voila les codes erreurs qui peuvent survenir sur votre voyant chekengine

le premier chiffre indique les bip long et le deuxieme les bip court

1.1=Crank angle sensor/circuit
1.2=Mass airflow sensor/circuit
1.3=Coolant temp sensor
1.4=Vehicle speed sensor
2.1=Ignition signal
3.1=ECM control unit
3.2=EGR function
3.3=Oxygen sensor
3.4=Knock sensor
3.5=Exhaust gas temp sensor
4.3=TPS - Throttle position sensor
4.5=Injector leak
5.5=(NORMAL SYSTEM OPERATION)
probleme de débimetre sur sr20de par jobi
Bon,déjà je vous rassure,ma Primera va bien...et même mieux que jamais puisque je n'ai plus de problème de richesse...

explication de mon problème ICI

Voilà,donc pour ceux qui ont suivi la chronologie de mes problèmes,je peux désormais dénoncer le coupable de mes pb moteurs de l'été:mon débimètre.En s'encrassant,voici ce que ça a provoqué (dans l'ordre):
- appauvrissement du mélange et donc:
- baisse des perfs
- apparition progressive de cliqueti (de pire en pire mais c'est très progressif) et donc:
- casse de deux électrodes de bougies
- pétage de joint de culasse

Et comme avec ça pendant un moment j'avais mon capteur de cliqueti qui était mort lui aussi,ça a pas aidé...

Tout ça pour vous dire que si le pb du capteur de cliqueti est un défaut HYPER MEGA CLASSIQUE et connu sur les SR20DE (vérifiez donc le votre,ça mange pas de pain),le coup de l'encrassement du débimètre est bcp moins connu...Ca prend environ 2 minutes à démonter et 5 à nettoyer...Et voyez ce que ça peut entrainer comme merde...
reglage de l'avance à l'allumage par NX-R
Tout dabord faite chauffer le moteur a sa temperature de fonctionnement.
assurez vous qu'il tourne maintenant a son regime de ralentie (750/800).
faite tourner le moteur a 2000T/min pendant 2 minute au point mort et sans accessoire en marche , ensuite faite deux trois monté en regime puis stabilisé le ralantie.
arreté le moteur et deconecter le TPS ( contacteur de position de papillon) il se trouve sur le boitier papillon coté conducteur.
redemarrer le moteur ( attention il peut avoir du mal a tenir le ralentie)faite encore deux trois monté en regime puis laisser le tourner au ralentie, aider vous d'une deuxiemme personne pour le maintenir a 800t si ralentie trop faible.
verifier a l'aide d'une lampe stroboscopique le timing actuel , il doit etre a environ 15°, le but de l'operation et de l'amener a 17° pour gagner un peut en efficacité.
au niveau de la poulie de vilbrequin il ya plusieur graduation.
les graduations sont les suivantes:
-5,0,5,10,13, peinture blanche,15,20
ou bien: 0,5,10,15,20
devissé legerement les deux ecrous de l'allumeur , tournez vers la gauche pour avencer vers la droite pour retarder.
le but et de se placer sur un 17° sans le depasser , en effet le depassement de cette valeurs ameliore encore mieux les montées en regime du moteur mais risque de faire cliqueté le moteur ce qui est mauvais pour lui , de plus le detecteur de cliquetis retardera l'avance automatiquement a un niveau de securite qui affectera les perf du moteur.
une fois les 17° trouvé revisser l'allumeur , verifié a nouveau le timing avec le strobo puis coupé le moteur et rebrancher le tps.
voila c'est fini.
pour regler le ralentie la procedure et la meme , mis a part que le reglage
du ralentie ce fait sur le regulateur de ralentie situé a cote du filtre a huile , en bout de collecteur d'admission, on vis pour diminuer on devisse pour augmenter.
si apres cette operation , et une fois le tps rebrancher le ralentie est remonté a l'ancienne valeurs c'est que vous avez un probleme plus serieux. , petite precision quand meme les valeurs d'avances americaine peuvent etre differant des notres car en effet le taux de compression d'un sr20de americain et plus faible qu'un sr20de europeen, donc evité le 19° ca fait quand meme beaucoup, JWT recommande 17° maxi sur un moteur stock et 15° maxi sur un moteur equipé de sont boitier modifier.
pose et reglage d'un SAFC sur sr20de par goose

Pour rappel, il s'agit d'un boitier eletronique pour controler/corriger le ratio air/essence. Le boitier intercepte des infos sur l'entrée de l'ECU, les modifies suivant les reglages que l'on lui donne, et ressort une valeur corrigée vers l'ECU.... de là, l'ECU voit plus (ou moins) d'air qui entre par le debitmetre que la réalité et donc enrichit (ou appovrit) en essence.

Le but final est d'avoir un mélange air/essence optimal... autour de 14.7 pour le ratio air/essence.


1/ Branchement

L'apexi se branche sur l'ECU (le controleur). Pour la 100nx (et pour bcp de nissan) le boitier se trouve sous la console centrale. Il faut enlever les cache à droite des pieds du conducteur et à gauche des pieds du passager. Ensuite, il faut debrancher un connecteur bleu à droite, et devisser la vis qui se trouve sur le gros connecteur de l'ecu. Ensuite on peut facilement debrancher le connecteur, et le sortir par la droite.

Une fois que le connecteur est accessible, il faut ouvrir un peu la gaine qui contient l'ensemble des fils, ça permet d'un peu mieux voir ce que l'on fait.

[Image: connecteur.jpg]
Il s'agit d'une vue du connecteur, coté cable... donc on ne regarde pas les troues du connecteur, on regarde les cables!

En coleur, le branchement ça donne ça:
S-AFC >>>>> vers >>>>> ECU
Rouge (IG Power) >>>>> Orange avec trait bleu
Vert (RPM Signal) >>>>> Bleu avec trait noir
Gris (Throttle Signal) >>>>> Blanc n°1
Marron (Ground 1) >>>>> Blanc n°2
Noir (Ground 2) >>>>> Blanc n°2 (le meme qu'au dessus), 1 cm plus loin
Bleu ne sert pas.

Jaune (MAF Output) >>>>> Orange du coté ECU
Blanc (MAF Input) >>>>> Orange du coté capteur (donc pas coté ECU...)

NOTE: Il faut couper le cable Orange, c'est celui du debitmetre d'air, sur lequel la valeur va etre modifier par le S-Afc. Pour les autres cables, ils ne servent qu'en lecture à l'apexi, il suffit juste de faire une entaille pour pouvoir souder le cable dessus.


Les connexions doivent etre faites le plus près possible de l'ECU, en se laissant qd meme une marge d'erreur... donc à une dizaine de centimètre du connecteur.

La marche à suivre complete :
1- Debrancher le (+) de la batterie

2- Brancher les masses de l'Apexi. C'est le + important, il faut que la masse soit bien connecté... donc on fais ça bien !
Il y a 2 cables pour la masse, Marron et Noir
Il faut IMPERATIVEMENT connecter le cable marron plus près de l'ECU que le cable noir, avec plus d'1 cm d'espace entre les deux... Donc en gros, en partant de l'ECU, vous connectez le cable marron sur la masse (cable blanc) à 10cm du connecteur de l'ECU, puis le cable noir sur le meme fil à 12/13cm du connecteur de l'ECU, 2 à 3 cm plus loin que le cable marron.

3) Brancher le cable Rouge.

4) Brancher le cable Vert.

5) Brancher le cable Gris.

6) Brancher le cable Jaune.

7) Brancher le cable Blanc.

Prenez bien votre temps pour faire ça proprement... rien ne presse ! Wink

Une fois le cablage terminé, on rebranche le connecteur sur l'ECU.


2/ Installation du boitier

Donc la c'est la partie perso... Vous le mettez ou vous voulez. Perso, il est là:

[Image: apexi_100nx_1.jpg]
[Image: apexi_100nx_2.jpg]

L'avantage, c'est que ça rentre au mm, pas besoin de s'embeter à le visser coller scotcher...
Pour le cable, il suffit de faire un petit trou à la fraiseuse dans la petit plaque en PVC. Elle s'enleve facilement en coulissant.

[Image: apexi_100nx_3.jpg]


Maintenant, y en a qui prefere encore plus caché, dans la boite à gant, d'autre plus en vu devant le tableau de bord, ou sur la console centrale...
Chacun ces gouts.


3/ Reglage de l'Apexi


On rebranche la batterie.
Pour voir si le travail est bien fait, on mets le contact (sans demarrer). L'apexi doit s'allumer.

Dans le menu configuration, voici les infos pour le SR20DE(T)

Sensor Type :
Hotwire

Sensor Number:
IN OUT
06 - 06

Cylinder/Throttle Sensor Type :
Cyl Thr
4 avec la fleche vers le haut à droite

On reviens à l'affichage normal.
On appui sur le l'accelerateur. La position du papillon (Throttle sensor) doit bouger de 0 à 100%... Cool, deja un capteur de bon !

Pour le reglage Lo Thr/Hi Thr, j'ai mis 10/50 (en dessous de 10% d'ouverture on est en Low Throttle, au dessus de 50% on est en Hi-Throttle).
Verifier bien que l'apexi est à 0% sur toutes les plages de regimes.

Ensuite on allume le moteur.

Si tout tourne rond, on est bon... Smile
Le regime doit s'afficher correctement sur l'apexi. En général, au ralenti on est à environ 100 tours de moins que ce qui est affiché sur le tableau de bord.
Tout va bien.

Maintenant, pour voir si l'apexi est bien branché, enrichissé en lo-thr à 1000 tours... Le bruit du moteur doit varier lorsque on enrichie. Varier de 0 à +15%, et revenez à 0% pour entendre la variation... Si vous sentez le leger changement, tout est okai, l'apexi est bien branché.


Maintenant, la partie technique, le réglage de l'engin... Donc la, le mieux, c'est de faire faire par quelqu'un qui s'y connait.
Pour infos, voici la procèdure que j'ai suivi.
On a branché un capteur O2 (une sonde lambda) sur le collecteur. J'en ai pas d'origine, je ne suis pas catalysé.
Ensuite, on l'a branché sur un mano "air/fuel ratio". La sonde lambda délivre 0.5 volt lorsque qu'on est au ratio 14.7 (lambda à 1). Notre mano affiche alors 1 barre verte (l'affichage est en gros 2 rouges, 2 jaunes, 2 verts, 2 jaunes, 2 rouges). Pour nous, le but est de pas griller mon moteur, donc on a regler la bete pour avoir 1 jaune au en plus des 2 verts, donc environ à 0,6 volt en sortie de la sonde (lambda vers 0.98).

[Image: FIG2.JPG]

La procédure consiste à regler d'abord en low trottle. Donc avec une faible ouverture de papillon, vous baleyez toutes les plages de regimes en roulant. Pas besoin de passer trop de temps sur cet aspect, puisque apparement le calculateur du sr20de à tendance à corriger lorsqu'on est en low throttle...
Ensuite, on regle en hi-throttle, donc pied dedans, papillon ouvert à fond... Pareil, on observe son ratio air/essence à toutes les plages de regime, est on ajuste...


Au final, sur ma 100NX, c'est revenu à enrichir de quelques pourcent en low throttle (de 0% à +5% entre 1000 et 3000 trs puis vers 1% lorsque on accelere encore).
En pleine charge, on appovri un peu au debut (-2 % à -5% de 1000 à 2000 trs). Puis à partir de 4000 trs, il a fallut bcp appovrir (jusqu'à -15%), puis petit à petit vers -10%.
Mais attention, n'essayer pas de reproduire ces reglages tel quel!... Chaque moteur est different, et ça depend surtout de ce que vous avez rajouter autour... Et surtout si vous faite vos reglages à l'oreille, vous allez appovrir partout parce que la voiture va mieux marcher, mais le moteur va vous lachez trés trés rapidement!... Donc pas de reglage au pifometre sous peine de cramer votre moteur.


4/ Resultat

Pour voir les resultats, on a utilisé un G-metre, qui donne les tmps au 0 à 100km/h, 200m, 400m, les reprises (60-100, 80-120, etc..), et la puissance aux roues et le couple (estimés en fonction du poids du vehicule... pas trés fiable)

J'ai fait un 400m DA avant l'installation, et un 400m DA après reglage, les deux au meme endroit, dans des conditions equivalentes.

Les resultats sont assez bon Wink

En reprise, j'ai bcp gagné... Normal puisque la voiture marche mieux surtout entre 4000 et 7000 trs.
Au demarrage c'est moins flagrant, puisqu'on a peu toucher à cette zone.

Les resultats sont egalement assez impressionant puisque les reglages sont fais sur une voiture qui n'est plus d'origine... Par exemple, le collecteur m'a apporter un leger gain une fois monté, mais maintenant que la voiture est reglé avec, le gain est encore plus important...

En chiffre, ça donne:
Avant / Après
0 à 100 : 7,4s / 7,1s
0 à 160 : 19,0s/ 16,5s
60 à 100 : 4,1s / 3,4s (en 2)
80 à 120 : 4,8s / 4,3s (en 2 puis 3, il y a un passage de rapport, ça fausse le resultat)
100 à 140: 5,9s / 5,4s (en 2 puis 3, il y a un passage de rapport, ça fausse le resultat)

200m DA : 10,00s @ 119,08km/h / 9,75s @ 122,98km/h
400m DA : 15,33s @ 148,70km/h / 14,90s @ 154,05km/h

Puissance aux roues (estimation...) :
116,1ch (86,6kW) à 6643trs / 126,1ch (94,0kW) à 6830trs

Couple (estimation...) :
134,1Nm (98,9 ft-lbs) à 5948trs / 144,0Nm (106,3 ft-lbs) à 5796trs



En image :
[Image: reprise.jpg]
[Image: hp.jpg]
[Image: hp_vs_time.jpg]



Voila, j'espere que ça pourra en aider certains.
Il y a surement quelques erreurs techniques la dedans, je ne suis PAS DU TOUT UN SPECIALISTE... donc si vous en relevez, dites le moi que je corrige le plus vite possible.

Si vous avez des questions, n'hesitez pas, j'essayerai d'y repondre.


Quelques liens utiles :
Réalisation d'un contrôleur de richesse : http://vassistance.free.fr/2002/controle...hesse.html
Comment ça marche le controle de richesse (US) : http://www.ffp-motorsport.com/tuning/o2meter.php
Préparation JWT (Jim Wolf Tech.) pour le SR20DE(anglais)par goose

Pour ceux qui ne connaissent pas, JWT est un trés gros et surtout trés bon préparateur spécialisé Nissan. Il a poussé à bout le SR20DE, et a l'ensemble des pieces les plus fiables et les plus performantes pour le SR20DE de nos 100NX.

http://www.jimwolftechnology.com/

Voici un peu l'ensemble des possibilités... (en anglais dans le texte... si vous avez besoin d'aide demandez moi).



Here is a list of what we can do for the 1991+ Nissan Sentra SE-R/200SX/NX2000/G20/Primera/Sunny/Pulsar using the SR20DE engine.

Note: Go to our web site and enter the part # in our products section to get more information.

ECU upgrade $595.00 on an exchange basis. We remove the top speed limiter, raise the rev limiter to 7,700 rpm and put in the most aggressive fuel map and timing curve for 91+ premium fuel. We also optimize the throttle response code for better throttle response. Call for current turnaround time. (1990-97 at this time only) We do have turbo programming along with different injector/MAF combinations available. We can reprogram your ECU for use with the SR20DE-T Bluebird and Pulsar engines. Call us for details on this. We do offer an ECU core exchange option. The additional refundable core deposit is $500.00 for the 1991-94 models and $700.00 for the 1995-97 models. Call us for more details. ECU upgrades for the 98+ models are still in development. Check back with us later to see how our development is progressing. It is possible to use a 1995-97 style ECU into the 98-2001 models. Contact us for info.

PSER1-1221X Pop-Charger air intake system $159.00 (1990+)
PBREA-THER0 AIV Breather filter (for 1991-93 models,) $13.00
PSHO1-3XXX2 Pop-Charger for Ford Mustang MAF conversion $165.00

ECU and Pop-Charger net about a 15 HP gain together

JWT NOS system (1991-97 only) is a microprocessor controlled system (50 or 100 HP gain,) that works with the JWT ECU (you must have a JWT ECU upgrade to use this.) The NOS Control Module actually switches the programs in the ECU between the regular upgrade and the NOS program. NOS is only sprayed during the following conditions: Above ~ 2200 RPM and shuts off ~ 200-300 RPM below the rev limiter, works only on full throttle depression, and with the arming switch on and bottle open. The air/fuel ratio stays at the best optimum settings under all conditions making this system the safest and most advanced NOS system available.

NSER1-NX136 NOS Control module 91-94 SER 50HP $450.00 (this unit gets installed inside a JWT upgraded ECU)
NSER5-NX136 NOS Control module 95-97 SER 50HP $450.00 (this unit gets installed inside a JWT upgraded ECU)
NSER1-NX152 NOS Control module 91-94 SER 100HP $450.00 (this unit gets installed inside a JWT upgraded ECU, must use with 370cc injectors)
NSER5-NX152 NOS Control module 95-97 SER 100HP $450.00 (this unit gets installed inside a JWT upgraded ECU, must use with 370cc injectors)

N4N20-HWARE NOS Hardware kit $583.00 (NOS bottle, bracket, braided hose, NOS spray nozzle, solenoid, relay, wiring and additional plumbing and instructions.) 370cc injectors (1995 300ZX-TT,) are required to be installed to use the 100 shot system. These injectors are available from JWT for $120.00 each or can be purchased from a Nissan dealer.

XSER1-HEADR 91-99 SR20DE FWD header $495.00
XSE00-HEADR 00-01 SR20DE FWD header $450.00
This header is a "Tri-Y design" and had 4-2-1 primaries and a flex pipe at the bottom. This header has a bright finish ceramic coating (looks like polished aluminum.) This header has fittings for the EGR, AIV if needed and 02 sensor. Horsepower gain is about 12-15 HP.



LSER1-NP000 JWT SR20DE FWD H/P pressure plate $225.00
LSER1-NDSTD Factory style disc for use with above pressure plate is $78.00
LSER1-T0000 SR20DE throw out bearing $30.00

LSER1-NC1MD JWT H/P pressure plate for SR20DE FWD including one side metal disc (sold as a matching set only,) $395 (This plate/disc combination is used for those who are very aggressive with their clutch use such as drag racing and with high horsepower turbo set-ups but still drive on the street.)

LSER1-ND2MD JWT clutch disc with metal both sides $240.00 (use with JWT H/P pressure plate, recommended for race application and big HP turbo.)

LSER1-NF000 Aluminum flywheel $425.00 (For the FWD SR20DE engines.) This unit is 11 lbs and allows the engine to rev much quicker resulting in faster 0-60 and 1/4 mile times.

LSER1-TWIND JWT twin disc clutch/flywheel package, includes a unique pressure plate with twin discs set-up and a special lightweight aluminum flywheel. Use this set-up for the very high HP turbo cars that will be subjected to harder launching than the typical street car. The price for this set-up is $1495.00.

ASER1-990S3 SR20 S3 billet cam set, .442" lift, 260 degrees duration (1991-99 only) $560.00 set
ASER1-990S4 SR20 S4 billet cam set, .464" lift, 266 degrees duration (1991-99 only) $560.00 set
ASER1-000S5 SR20 S5 billet cam set, .503" lift, 281 degrees duration (1991-99 only,) use with oem springs/retainers, 7700 rpm, road race cam, lopey idle, ~8 more hp than S4, will not pass smog, low bottom end power, use with big collector header and 3" exhaust system w/low back pressure. $560.00 set

ASER0-2KS3R SR20 S3R billet cam set, .450" lift, 262 degrees duration (for the roller rocker" 2000-2001 SR20DE) $560.00 set

ASRRL-SPRNG Spring, HD for roller rocker SR20 engine only, SR20DE uses a roller cam in 2000-01, Allows 7,500 rev limit (stock spring=6,800 rpm,) with JWT ASER0-SKS3R cams. $17.00 each

ASRVE-SPRNG SR20VE high rev valve spring, inner/outer pair, allows the SR20VE to rev to 8,000 rpm. Also for high lift secondary lobe cams, not for use on SR20DE. $25.00 each

ASER1-C10C1 JWT C1 billet cam set $560.00, .476" lift, 264 degrees duration. These billet cams require use of the JWT HD valve spring and titanium retainer set as well as a different ECU program to properly use these.
ASER1-C20C2 JWT C2 billet cam set $560.00, ..500" lift, 275 degrees duration. These billet cams require use of the JWT HD valve spring and titanium retainer set as well as a different ECU program to properly use these.
ASER1-C30C3 JWT C3 billet cam set $560.00, .526" lift, 285 degrees duration. These billet cams require use of the JWT HD valve spring and titanium retainer set as well as a different ECU program to properly use these.
ASER1-00C6M JWT C6 billet cam set $560.00, ?" lift, ? degrees duration, pro road race, 9,000 rpm max, hi comp. 11:1+, race fuel, lopey idle, no low speed driveability, not smog compliant, use with custom larger header, can make 200hp to the wheels. Note: Must gut out OEM hydraulic lifter and put shims back in to recommended JWT lash spec.

ASER1-SPRTI Spring/Titanium retainer set for SR20DE for JWT Pro Cams $499.00 set

ASR20-SPROC SR20 8 hole cam sprocket set $140.00 (use with our cams for turbo applications or special circumstances.)

ASER1-GDET7 Valve guide set, bronze, exhaust on SR20DE-T only w/7mm std O.D. valve stem size, set of 8 qty (Note: SR20DE-T Silvia/180SX/Pulsar/Bluebird/Avenir all use a larger 7mm valve stem size,) $50.00
ASER1-GUIDEX Valve guide set, bronze, exhaust on SR20DE w/6mm std O.D. valve stem size, set of 8 qty $50.00
ASER1-GUIDIN Valve guide set, bronze, intake on SR20DE(T) w/6mm std O.D. valve stem size, set of 8 qty $50.00

IZ325-T0370 370cc injector $131.00 each, for direct install into original OEM fuel rail (not pulsar,) use for turbo applications for 260hp max potential or JWT 100 shot N2O system.

IMSD0-50LBS 50lb MSD injector $100.00 each (use for turbo applications along with the custom fuel rail and Ford Cobra MAF and special ECU programming.)

IMSD0-72LBS 72lb MSD injector $100.00 each (must be used with dropping resistors,) (these are for the highest HP turbo applications and require the JWT ECU program and Ford MAF.)

IMSD0-96LBS 96lb MSD injector $100.00 each (must use with dropping resistors,) (these are for the upcoming JWT ECU program to use with the 1993 Ford Mustang Cobra MAF.

IRES6-6OHMS Dropping resistors for 72lb MSD injector $3.00 each

IRAIL-MSSR1 Billet fuel rail, 91-93 SER to MSD $225.00 (for use with 50lb MSD injectors)
IRAIL-MSSR2 Billet fuel rail, 94+ SER to MSD $225.00 (for use with 50lb MSD injectors)

IMAFC-COBRA Ford Mustang Cobra MAF w/harness adapter $325.00 (for use with larger injectors for turbo applications and requires ECU program change to use.)

IMAFL-LT90M Ford Lightning MAF w/harness adapter, 90mm ID, 100mm OD outlet, 700hp $275.00

JWT Forged Pistons for turbo applications $180.00 each. These pistons fit the stock rods or our billet rods below and come with pins and double Spirolox clips. The ring grooves are cut for the 90+ 300ZX-TT piston rings. Bore sizes are 87.00mm (SZ320-T0008) and 87.50mm (SZ320-T5008) and compression ratio is 8.5:1. The wrist pin is offset in the piston for less clatter and the hi-silicon content of these pistons requires less clearance than conventional forged pistons. We also have an 86mm bore size available (SSR20-T0085) if your engine does not require boring. The ring set (SSR20-R862K) for these is $83.00.

The JWT 2.4 liter stroker kit can fit all SR20DE(T) engines. Special machining work is required to install the sleeve kit. This set-up comes with a billet chromalloy," full counter balanced crankshaft, 4 sleeves, 4 forged hi-silicon 89.5mm pistons (either 8.5:1 C.R. for turbo or 11:1 C.R. for N/A,) and our optional billet chromalloy" rods. The stroke is 94.4mm. The pistons have a full floating wrist pin with double spirolox." This entire set-up is $4459.00 with our optional connecting rods.

OSR20-STD00 "Chromalloy" Billet steel connecting rods for the SR20DE and DE-T are $200.00 each.

OSR24-CRANK SR stroker crank, 94.4mm stroke, billet chromalloy," hollow rod journals, fully counterbalanced $2350.00

SSR20-SLEEV sleeve kit SR20, 89/90mm bore, 88.5mm ID X 95mm OD w/top flange $589.00

JWT offers cylinder boring for SR20DE engines using our pistons and our torque plate for $200.00 labor.

JWT also can install piston oil cooler jets into your SR20DE block (similar to the DE-T engines,) for $250.00 parts and labor.

We also offer cylinder head machining work package. This consists of porting the intake and exhaust ports and cleaning up the combustion chamber, match porting the intake manifold to the head and doing a multi-angle performance valve job. This is done on your cylinder head and any additional parts are extra. Contact us for any other questions about our machine work above. $950.00 for head package (HSR20-CHEAD) and this is on your good cylinder head/intake manifold.

OSR20-OILPU SR20DE High volume oil pump conversion kit $295.00, 70%+ volume (includes cover, pump, pulley, spacer 91-97 SR20,) Note: Must use with correct oil pick-up tube.

OSR20-PUPT1 Oil pick-up tube $25.00, 91-99 SR20 US Spec, use w/JWT Hi-Vol pump kit, slight mod needed
OSR20-PUPT2 Oil pick-up tube $25.00, 00-01 SR20 US Spec, use w/JWT Hi-Vol pump kit
OSR20-PUPT3 Oil pick-up tube $25.00, BB/N14 DET 4WD pan, (same as JDM Pulsar Tube) use for JWT Hi-Vol kit

OSR20-WPULL SR20DE (FWD) water pump pulley, 120mm diameter, larger O.D. for lower water pump speed $39.95

The JWT 2.4 liter stroker kit can fit all SR20DE(T) engines. Special machining work is required to install the sleeve kit. This set-up comes with a billet chromalloy," full counter balanced crankshaft, 4 sleeves, 4 forged hi-silicon 89.5mm pistons (either 8.5:1 C.R. for turbo or 11:1 C.R. for N/A,) and our optional billet chromalloy" rods. The stroke is 94.4mm. The pistons have a full floating wrist pin with double spirolox." This entire set-up is $4459.00 with our optional connecting rods.

GSR20-H9012 metal head gasket SR20 FWD (90mm x 1.2mm) use when bore size will exceed factory gasket bore size. $300.00

MSER1-10000 JWT motor mount kit fits 91-99 SR20 FWD (not G20,) the 3 round mounts have a solid, high durometer rubber inside the shell and comes with a new custom torque strap. The 3 round mounts must be pressed into your existing engine mount brackets and replace the original insert. Use these for all performance applications as the original mounts allow too much engine movement which leads to cracking transmission case and wheel hop. $250.00 for the complete set.

MISCW-STKR1 JWT windshield banner available in white only $22.00

MISCL-FRAME JWT license plate frame $4.00

MISCL-PATCH Patch, JWT embroidered, 5" x 2", iron on or sew on $5.00

MCM10-NOMAX CM-100 Engine monitor without max, can show duty cycle, MAF voltage, MPH, H2O in F. $119.00

MCMX1-WMAX0 CMX-100 Engine monitor with max, can show duty cycle, MAF voltage, MPH, H2O in F. $159.00

JWT does offer 5 different turbocharger units (turbo only,) which can be used as upgrades to an existing turbo engine or added to your custom manifold. See our web site for some info these or give us a call.

For suspension upgrades contact Dave Turner Motorsports (858) 571-3811 or see www.daveturner.com

For 1995-98 SE-R owners and some 91+, Turbonetics currently sells turbo systems and uses JWT ECU and injector upgrades with them. They can be reached at (805) 581-0333 or see www.turboneticsinc.com

Note: prices subject to change after 9/04 without notice, call to confirm all pricing.


If you have any technical questions or would like to order these parts, please give us a call M-F 8-5 (pst) @ 619-442-0680
explicatif complet de quoi faire et avec quelles pieces pour booster le sr20de par tibo
La modification de votre Primera (s'applique aussi à Almera GTi,sunny gti et 100nx gti)
Cela s'applique à la plupart des modèles de Primera cependant les accessoires de réglage d'accord ive mentionné sont spécifiquement visés au Primera GT P11, mais tiennent compte que la plupart des parties sont interchangable.
Maintenant que vous êtes un propriétaire fier de votre Primera, vous estimez que vous pourriez faire avec plus poussent un peu sous le chapeau, mais où commencez-vous ? Une chose à se souvenir est de dépenser(passer) votre argent sagement, demander des avis sur le réglage d'accord de produits qu'youve vu, dont sortent juste et achètent la première chose youve vu, comme vous pouvez terminer de le vendre pour acheter un meilleur remplacement(remplaçant). Voir ce que d'autre emploient et vous demandent pourquoi ? Pourrait-il être que ces produits ont été à toute épreuve et qu'ils donnent la meilleure exécution(performance) possible par livre ? Probablement ......... lu sur .........
En règle générale, aidant votre moteur respire plus facile produiront plus de pouvoir(puissance). D'abord je suggérerais de remplacer votre filtre à air. Le meilleur produit ive a trouvé wasnt d'une société jap, mais de nos amis américains. Hotshot est un des EU les sociétés basées qui passent devant dans le réglage d'accord de l'informous SR20DE. Ils ont ce qui sait(connaît) comme le HS CAI, le système de prise d'air froid, qui remplace la norme airbox et la pipe de consommation. Ce système transfère le filtre à air à l'intérieur de l'arc de roue de passagers, en agrandissant un trou exsisting dans l'aile intérieure à côté de la batterie(pile). La pipe de consommation qui est fourni des kits achève alors le système. L'idée est que comme des courants atmosphérique par le filtre, la longueur de la pipe augmente les caractéristiques de flux de l'air, créant ainsi un effet d'air de bélier, se précipitant l'air dans le moteur, améliorant l'exécution(performance). On peut s'attendre les bénéfices(acquisitions) d'upto 10 BHP.
Un autre bon produit que Hotshot peut fournir est le Coup de tête(chute,en-tête) Hotshot (pour épuiser le collecteur) qui revendique upto 15 BHP l'augmentation. Cette unité regarde non seulement un plaisir, mais aide les gaz d'échappement à s'échapper plus rapidement.
Tant au-dessus des produits donne un accélérateur beaucoup plus rapide au moteur responce, que le ton guttural plus agressif et aide le bas et le milieu du moment de torsion de gamme, donnant le Primera un beaucoup meilleur début de la ligne.
Contacts : Fabricants http: // www.hotshot.com
Fournisseur Mike à http: // www.motivational.net


Ensuite le pas devrait mettre à niveau à un plein échappement. HKS font un plein système Drager qui est un très bon produit. Si vous avez des plans d'acheter ce sytem, donc vous l'habitude avez besoin d'un coup de tête(chute,en-tête) Hotshot. C'est un système complet qui donne des bénéfices(acquisitions) impressionnants mais à un prix de £ 550.00 Non seulement il exécute bien, mais maintient(entretient) une quantité(somme) de repectable de bruit polution. Il vient avec un shiney autour 4 "tailpipe.
Alternativement, si vous avez des plans d'acheter un Coup de tête(chute,en-tête) HS, considérez ensuite un système inoxydable douanier(personnalisé) Powerflow d'acier. Cela vous donne le choix infini de queue coupe et offre l'exécution(performance) excellente par livre. Vous vous décidez comment fort votre système sera. Le diamètre recommandé d'ennui pour employer avec ce système est pas plus que 2.25 la pipe. Vous devez assez donner la bonne exécution(performance), mais aussi maintenir(entretenir) en arrière la pression au système. Les systèmes s'étendent de £ 250 - £ 350 selon des revendeurs. Vous pouvez aussi vouloir employer n'importe quel aftermarket l'arrière boîte, cette voie de créer votre propre style unique.
Contacts : HKS http: // www.dpmotorsport.com
Powerflow http: // www.powerflowexhausts.com
Maintenant est le temps pour quelque moteur sérieux tweeking à l'aide de quelques cames. JWT (c'est-à-dire Jim Wolf la Technologie) est un autre les tuners américains fortement évalués qui peuvent fournir des arbres à cames de bonne qualité pour le SR20DE. Ils produisent divers rectifie de cames, mais ceux qui sont plus convenus pour les rues sont les cames S3. Notez que dans la plupart des nos cas(affaires), nous avons un moteur de Rocker(fauteuil à bascule) de Rouleau SR20DE, qui signifie que nous avons besoin de l'equivilant S3 des Cames de Rocker(fauteuil à bascule) de Rouleau, exposez-le s'il vous plaît sur l'ordre. Ces cames donneront l'augmentation entre 10-15 BHP et auront le 262 profil de degré et se soulèveront. Ces cames entrent vraiment en vigueur susdits 4,000 TR-MIN quand le moteur tire le plus fort. Achevant ainsi la ligne en haut. Youve a augmenté votre milieu de / bas la gamme et c'est le glaçage sur le gâteau.
Le ramoneur offre aussi des cames perfomance, ils sont des produits alimentaires ici au ROYAUME-UNI et plus accessable au plus. Les prix sont autour £ 380+VAT avec le bonus de remise(escompte) de 10 % pour des membres de Club.
Contacts : JWT Ben Pila http: // www.jimwolftechnology.com
Ramoneur Garry http: // www.pipercams.co.uk

Finalement, il y a quelque DOS et dont. Pour aider accorder tout pour atteindre un niveau maximal l'exécution(performance), je suggère une mise à niveau d'ECU. À l'heure actuelle, il y a très peu à l'égard des mises à niveau d'ECU pour le SR20. L'offre de superchip une Icône de Course(race), mais sauf changer le chronométrage(choix du temps), il a très peu d'effet sur l'exécution(performance) de moteurs. La seule mise à niveau d'ECU que je recommande est le Dastek Unichip. Cette unité est professionnellement installée superposent l'ECU quel incorperates tous les détecteurs de réserve(valeur) de moteur, les lisant et les changeant pour changer la voie votre réserve(valeur) l'ECU exécute, produisant ainsi plus de production. Cette unité peut être adaptée pendant n'importe quelle étape(scène) de réglage d'accord et redressée la carte après chaque mise à niveau pour permettre l'exécution(performance) maximale. Non seulement cela, mais cela a le potentiel pour faire plus dans l'avenir comme le contrôle de NUMÉROS, le contrôle de Traction, aswell comme Turbocharging. Il peut changer le chronométrage(choix du temps) et la courbe de carburant pour convenir aux nouvelles demandes de votre moteur nouvellement accordé. Les prix sont d'autour £ 370.00 selon des revendeurs, cela inclut la configuration initiale après l'installation. La configuration supplémentaire est ensuite chargée par heure, demander à vos revendeurs locaux l'évaluation.
Une autre option est l'ECU JWT qui reprogramme de vous la réserve(valeur) l'ECU par le complément d'un conseil de fille et le chip ROM. Cela coûte l'USD environ de 595 $, mais offre le réglage d'accord supérieur et des capacités de configuration, y compris l'utilisation d'injecteurs uprated, MAFS plus grand quand il vient à turbocharging.
Le séjour loin de petites choses comme FSE augmente des valves, Ecotek des valves, ils dont benifit notre moteur du tout, dont être dupé par toute la frénésie. Dépensez(passez-vous) l'argent sagement.
Contacts : Dastek Unichip http: // www.dastek.co.za
Superchips(superfrites) http: // www.superchips.co.uk
JWT http: // www.jimwolftechnology.com

JWT ECU sur un Rocker(fauteuil à bascule) de Rouleau SR20DE


Maintenant que vous avez gagné plus de pouvoir(puissance), vous devez considérer le traitement, afterall, le Pouvoir(puissance) n'est rien sans Contrôle.
Les mises à niveau les plus communes et acceptables baissent des printemps. Il y a quelques kits de printemps disponibles pour Primeras, comme Eibach, H*R et la Dynamique de Châssis. N'importe quel de ces kits laissera tomber la voiture de 30-40mm et offrira un tour plus ferme, qui peut être dur de temps en temps, mais la stabilité très accrue en freinant et coinçant(verrouillant), donc un peu plus cahoteux est un petit prix pour payer pendant les heures infinies d'amusement sur la route. Les prix commencent de £ 100.00
L'option suivante est Koni réglable ou non des chocs réglables et le kit de printemps. Ces offres de kit autour 40mm baissent mais améliore énormément l'exécution(performance) de voitures. Quant à être réglable, chaque unité peut seulement être ajustée une fois enlevé de la voiture, tenez si compte que l'installation peut prendre quelques attemps. Ive entendu le rien que bon commentaire de ce kit des gens qui les ont employés. Les prix sont d'autour £ 500.00
Par dessus tout, l'installation suprême pour des voitures doit être coilovers. Il y a quelques sociétés qui font coilovers pour nos voitures, mais des demandes(applications) de contrôle(chèque) d'alway pour votre véhicule. Le meilleur coup pour le dollar doit être mon découvrent nouvellement B*G coilover l'installation de suspension. Les prix pour ce kit sont de £ 690.00 et est disponible dans le ROYAUME-UNI. Ces kits comme le plus, venez avec 4 unités coilover complètes qui offrent la gamme diverse de hauteur adjustabiliy. Alors nous avons les goûts JIC et Tein, mais être attendu à la partie avec sur £ 1200.00 Cette offre de kits légèrement plus à l'égard des supports supérieurs adjustble où n'importe quel corections dans la cambrure peut être fait.
Finalement, n'oubliant pas vos freins. Il y a beaucoup de sociétés qui offrent des protections(blocs) d'uprated pour votre voiture, dont beaucoup est bonne, cependant, le pouvoir(puissance) d'arrêt réel vient d'uprating vos disques. Tarox offrent le 40 disque cannelé à un prix d'environ £ 240.00 (la paire) mais la meilleure installation recommandée par la plupart des utilisateurs est Rotordiscs. ces disques semblent non seulement frais, mais l'offre le pouvoir(puissance) d'arrêt très accru avec des propriétés de rafraîchissement très efficaces. Rotordiscs viennent complet avec des protections(blocs) de Nippart pour £ 235.00 (le jeu complet) qui les rend très en compétition évalués et c'est ce que j'emploie.
Contacts : Eibach http: // www.eibach.com
H*R http: // www.hrsprings.com
B*G http: // www.bg-suspension.com
JIC http: // www.jic-magic.com
Tein http: // www.tein.com Http: // www.teinusa.com
Tarox http: // www.tarox.co.uk
Rotordiscs http: // www.rotordiscs.com
Exemple de prepa de SR20DE anglais
MOTEUR MODS :
HOTSHOT COUP DE TÊTE(CHUTE,EN-TÊTE)
J.W.T S3 CAMES
POWERFLOW CHAT S'ÉPUISENT EN ARRIÈRE
MARQUE DONNANT UNE FESSÉE À NOUVEAU KIT D'INDUCTION K*N AVEC ALIMENTATION AÉRIENNE FROIDE
CYBERMÉTIER S.S PIPE DE CONSOMMATION
ICÔNE DE COURSE(RACE) DE SUPERCHIP (BIENTÔT POUR ÊTRE REMPLACÉ)
170 B.H.P et MOMENT DE TORSION DE 145 PIEDS/LIVRES..... AVEC VIEUX FILTRE À AIR... AUCUNE PIPE DE CONSOMMATION.. AUCUNE ALIMENTATION AÉRIENNE FROIDE.. ET PROBLÈMES FUELING

Mods :

Kit d'Induction de Cybermétier
Hotshot Coup de tête(chute,en-tête)

Std : 137 bhp
Maintenant : 161 bhp 6333 tr-min, moment de torsion de 139 livres/pieds 5700 tr-min

HS Coup de tête(chute,en-tête)
Consommation de cybermétier
Échappement avec un trou dans cela
166 bhp à 6333 tr-min et 146 moment de torsion

Moteur Mod :
• HKS Superpowerflow Prise d'air (avec alimentation aérienne froide douanière(personnalisée))
• HKS Chat Drager Superbe s'Épuisent en arrière
• HKS AFRICAIN (Régulateur Aérien/De carburant)
• Hotshot Coup de tête(chute,en-tête) (Collecteur et Gouttière)
• Chronométrage(choix du temps) d'Avancé à 17*
- 169hp et 146 livres/pieds tq (prévoyant 15 *)
- 167hp et 152 livres/pieds tq (prévoyant 17 *)

Flux libre(gratuit) milieu de section et arrière boîte
Décharge chaude Coup de tête(chute,en-tête)
Le ramoneur 242* (la pente(jargon) se rappelle exaclty) des cames de ramoneur
K et le filtre de PANNEAU(JURY) N (gagneraient environ 5 un kit d'induction I rekon, plus avec CAI)
170 hp pieds de 140 livres
Powerflow Échappement
Pipe de Chat
Kit d'Induction CADET + Alimentation Aérienne Froide
Résonateur Enlevé
Bosch Superbes 4 Prises
Avancement prévoyant à 17 degress
142 BHP Roues - Moment de torsion inconnu.
Hotshot coup de tête(chute,en-tête) et en bas pipe
Le moment de torsion de Tube 2.5"a porté l'échappement
NGK prises de platine
Cybercrart kit d'induction
HKS AFRICAIN
167 BHP moment de torsion à 6230 TR-MIN (sans chat sur) prévoyant à 15*
Maintenant à 163 BHP le moment de torsion à 6090 TR-MIN (avec le chat en arrière sur +the ambiant l'intérimaire était 10-15 degrés plus haut) prévoyant à 17*
FAQ des pieces pour sr20de (anglais) extrait de G20.net

Intakes:

Intakes are probably the most common and least expensive bolt on midification you can do to your G20. They help the G20 get more air into the cylinders and help mid range to top end power.

Ghetto airbox modification/Stock Airbox Mod
This modification is done to the stock airbox. This modification entails cutting holes in the stock airbox to allow more air through the factory filter location. This modification usually does not gain any hp, but rather gives the motor a nice throaty growl, somewhat similar to a WAI setup. For many this is the first modification performed.

Warm air intake - (WAI): The most popular setup for G20’s is the Jim Wolf Technology Pop Charger. This solution provides a velocity stack that bolts to the MAF housing that provides a smooth entry for incoming air. The filter element bolts to the outside of the velocity stack and sits in the engine bay behind the battery. This setup is CARB certified. There are also many low cost WAI setups available right now that are comprised of a MAF adapter and generic cone filter. You can expect about 1-3hp with any of these setups. The main difference here is noise; these will make the engine noticeably louder under acceleration.

Cold Air intake - (CAI): The Cold Air Intake is a much more potent intake. The installation is a little bit harder, but the overall results are much more pleasing. The cold air intake will make a lot more midrange power than a WAI, and more top end power as well, about double what the wai produces. The three popular CAI setups right now are made by Hotshot (HS), Place Racing (PRI), and AEM. There is also a Stillen setup, but it’s a slightly different design. The HS, PRI and AEM units replace the piping from the throttle body all the way to the wheel well. They are all make of smooth, mandrel bent piping and with the use of silicone couplers place the MAF in the center of the piping, very close to the stock location. By moving the filter to the wheel well the air entering the motor is much colder, denser air, which helps with power. As well the length and size of tubing helps with resonance tuning. Resonance tuning is very much like sound tuning, where the pulse waves coincide with the open intake valves helping force air into the cylinder.

Larger Throttle Body
This modification doesn't gain any power on the dyno, but it does help with throttle response, it'll make the car feel more responsive. The stock throttle body is already rather large at 60mm.

Larger MAF
This modifcation will not free up any power on a N/A SR20. The only reason to upgrade the MAF is if you can max out the stock unit at 5.15V. Anything short of a large nitrous kit or turbo system most likely will not be able to max out the stock MAF.

Headers:

Headers are the best bolt on upgrade you can do outside of the motor. They can produce quite a bit of power, are rather inexpensive, and can be installed relatively easily.

Hotshot: Hotshot Performance makes by far the best performance header for the G20. They are dyno proven to produce the most horsepower and have gone through many revisions to “stay on top” so to speak. The hotshot unit is a 4-2-1 setup. The hotshot really boosts power output right around torque peak and gives very good top end power. Expect about 10-15 hp, depending on your setup.

AEBS: AEBS headers are older headers, but still very good. These provided very close competition to the HS header and in many argue they are a better header. They are a 4-1 design, which can cause some clearance issues on lowered cars. They do not provide any emissions revisions as well. This header helps over a very broad range of rpms and makes very close to what the hotshot makes as far as top end power gains. There are rumors that a revised AEBS header will be released and will produce more power and also provide emissions equipment bungs as well. Expect about 10-12 hp, depending on your setup.

Stillen: Stillen headers have been around for a few revisions, just like the HS units. They are either a 4-2-1 design or a 4-1 design, depending on the revision with the 4-1 being the newer one. These headers make good power as well, not quite as much as the HS units, but very close. The difference in power between the 4-2-1 and the 4-1 units is very minimal. The Stillen unit gives good low end power and will peak slightly lower in the powerband than the HS header. Expect about 8-10 hp, depending on your setup.

Pacesetter: The pacesetter header is a low priced header. It is very closely related to a first gen hotshot header. One of the models is coated with a cheap black paint that’ll burn off the first time it’s used, newer models can now be purchased with an optional ceramic coating. Expect 5-7 hp.

Other noteable headers are the S&S header (6-8hp, 4-1 design) and …. HP racing?

Catalytic converters:

Stock: This unit is very good, does not hurt horsepower at all, and helps reduce the poisonous exhaust gases; the stock cat is 2.5”

Aftermarket: The only reason to get an aftermarket cat is if your stock cat becomes clogged or damaged. They are an affordable replacement for stock. You can get a wide variety of different sized and applications. The most popular brands are random technology and Catco.


Exhaust System:

The purpose of an upgraded exhaust system is to reduce backpressure while keeping exhaust gas velocity as high as possible to increase the efficiency of the motor’s breathing capability. SR20DE powered vehicles seem to benefit the most from 2.25”- 2.5” exhaust in naturally aspirated form. Turbocharged engines like as large and free flowing exhaust as possible. The most popular and easiest size to fit is a 2.5-3” exhaust.
For any high performance exhaust you’re going to want to only get a mandrel bent exhaust system, crush bends rob horsepower and can also contribute to a raspy sound.
As for the resonator and muffler you’re going to want to find a perforated core muffler rather than a louvered muffler.
Some readily available systems that’ll bolt on to your G20 can be found through Greddy, Blitz, and VRS. There are also rear exhaust sections available; these replace your piping from the axle back and the rear most muffler as well. These setups can be sourced through companies like Remus, Sebring, Super Sprint, and Stillen. However, most people opt to have custom systems fabbed up at local exhaust or high performance shops. The most common setup right now incorporates a Magnaflow round muffler for the resonator and an oval Magnaflow muffler for the rear muffler. With a full cat back exhaust system you can expect to gain anywhere from 3-10hp depending on your other mods and stock exhaust system. This modification helps mainly top end horsepower.

Underdrive Pulleys:

Right now Unorthodox Racing makes pulleys for the SR20DE motors. They have a 2 pulley set that replaces the crank and water pump pulley and a 4 pulley set that replaces the crank, water pump, power steering, and alternator pulleys. They work by slightly under driving the accessories and also reducing rotating mass, each helping free up hp the motor normally uses to spin the accessories. A great feature about the pulleys is that they also prevent the water pump from cavitating at high rpms, stock it’ll start above 6500rpms. A must have for anyone planning to hot lap or track race their G20.
The two pulley set is good for about 4-6whp gains, climbing from a small 1-2 horsepower gain off idle, to a much larger 4-6hp at redline. The 4 pulley set is good for about 1-3hp more than the 2 pulley set, the installation is also quite a bit more difficult and time consuming. This mod is very deceiving and doesn’t feel like it helps as much as it does, due to the smooth, linear power gain, but is a great bang for the buck mod.


Lightened Flywheel:

There are two main options for this modification, lighten the stock unit to about 14lbs, or purchase an aftermarket unit that weigh in at 9-12lbs. To compare the stock flywheel is about 18-19lbs. Either setup will noticeably help your G20’s acceleration. This modification helps by reducing rotating mass, helping the motor and drivetrain accelerate faster. The purpose of the flywheel is to store potential energy and help the car start moving from a stop. However, once in motion the flywheel acts as dead weight and actually hurts acceleration. Reducing this “dead weight” helps the motor spin easier and more freely. Also, the lighter the flywheel the faster the engine decelerates as well. With a lighter flywheel you will have to rev the engine higher to keep from bogging from a stop.

Contrary to popular belief this modification will help when drag racing. You will have to adapt to rev the car higher off the line, but once in motion the improved acceleration of the car will help lower your ET’s. This mod is also great on a road course as it will help you more quickly and easily match rpms between gear shifts.


Timing:

For optimal performance on a stock motor dial in between 17-19 degrees timing and run 91-92 octane gas. Once modified w/ aftermarket cams you will want to back this back down, and it will vary between cams. Jim Wolf’s regular S3 cams like lower timing, 13 degrees has given the broadest powerband in dyno tests. If you are running a Jim Wolf ECU you’ll want to set your timing to 15 degrees, unless otherwise stated on the JWT ECU.


ECU:

The premiere tuner for Nissan ECU’s is Jim Wolf Technology. JWT can reprogram your stock G20 ECU for a variety of different applications. They can account for a change in injectors, MAF, the addition of cams, nitrous, a turbo kit, and even a different motor! They also can raise the rev limiter, remove the speed limiter (if there is one) and account for most changes in emission equipment.

Cams:

91-92 Intake cam
This is a great bang for the buck modification for 94-99 G20's. Usually costing less than $100 for the cam, this is close to the cheapest 6whp gain you'll find. At redline (7500rpms) the gains will be approx. 10-12whp. This intake cams has 16 degrees more duration than the later model cams.

JWT Cams

-Street Grinds
These cams provide great power gains from idle all the way to redline. Depending on the grind, your power band may vary. S3's are the most tame cams, they will increase power from idle all the way to redline. They have a very slight lope at idle, and should gain about 12whp at peak, with gains as high as 25whp at redline (7500rpms). The S4 cams can be used on the stock valvetrain, just like the S3's. The S4's will gain a little more power up top and will not fall off as quickly. But, they also lose some power down low in the rpm range. The idle on these cams is a bit more rough as well.

-Competition Grinds
These are JWT's potent race developed cams. The competition series cams are the most aggressive cams available for a hydraulic valvetrain SR20 motor. They must be used in conjunction with the JWT valve springs and retainers. A JWT ECU is pretty much necessary with this modification as well, as the idle is rather rough. There is a noticeable lope in the lower RPMs and there is a loss in low end power. However, in the upper RPMs these cams will gain more power than any other cam available. These really are not designed for a street car and should be used on a built motor.

HKS, Jun, Tomei, Toda, etc..
Not a lot is known about these cams. They are usually very expensive and are difficult to find. You can find anything from mild street cams to aggressive race cams from these manufacturers. A few SE-R owners have had good results with the larger Jun cams, although they seem to be very high rpm oriented cams, just like the JWT C series cams. The Tomei cams seem to produce good power throughout the powerband, but don't appear to make quite as much power up top as the JWT S3's do. Hopefully more information will surface about these cams.

Built N/A Motors

Pistons and Higher Compression
These usually are not very common modifications unless you're looking to extract every last hp out of your motor. Going with larger pistons will slightly increase the size of the combustion chamber. For example an 87mm 300zx piston will increase your motor from 1998cc's to ~2045cc. Not much of a change, but at this point every little bit helps. Higher compression is possible with new pistons. JWT forged 300zx pistons will raise the compression to 11.0:1, up from 9.5:1 stock. This will net about a 10whp gain all across the powerband, from idle to redline. With this modification you will need a reprogramed JWT ECU in order to avoid detonation.

Headwork
This is left to the professionals. Headwork will gain you power in the higher rpms. Good headwork usually won't lose any low end power. You'll most likely see anywhere from a 10-25% increase in flow. As far as power gains, it really depends on your other modifications and how extreme you go with the headwork. Some opt to even raise the compression by reshaping the combustion chambers, that will gain some extra hp as well.

Stroker Kits
These are only for the most serious of engines. They cost a TON of money and are extremely hard to obtain.

Extrude Honing
This really doesn't help too much on an N/A SR20 motor. You'll see a few hp from the power peak to redline. On a fully built motor you might see gains start a bit lower, and help more at higher rpms, but this should be seen as a final modification, where you're looking for every last hp.
prépa du sr20de (anglais)
Timing
Here is the all time cheapest hop up that anyone can do. Typically most SR20DEs have the timing set to 13 degrees or less from the factory. I have seen as low as 10 degrees on a brand new factory fresh car. You can safely run up to 15 degrees on regular gas on most SR20DEs. For best performance on a stock engine, put in 92 octane and dial in between 17 to 19 degrees. This has been proven by recent dyno testing on a stock car to give up to 6 more hp at the wheels. Remeber if you have your timing turned up this high you MUST use 92 octane fuel. Do not exceed 17 degress of advance if you have a JWT ECU.

Don’t tolerate any detonation though. Detonation will kill your engine quicker than lard and coconut oil will kill you! I am putting the detonation warning in here because the timing pointer on the engine can be easily bent which could cause you to accidentally over-advance your timing! It happened to me so be careful! If you have the JWT ECU, set the timing at 15 degrees. On the dyno I have not seen any difference between 15 and 17 degrees with a JWT ECU although bottom end snap might feel a little better. It is better to be safe at 15 than on the edge at 17 for only a perceived difference in throttle response. Be sure to disconnect the TPS when adjusting the timing and remember that the JWT NOS module requires that TPS terminal 1 and 2 be shorted out when setting the timing.

Synthetic Oils and Lubricants
This is a good non-envasive hop up part. I am going two open a whole can of worms here but as far as I know, Mobil 1 is the only synthetic oil to get for your engine. Not only is it the cheapest but it works the best. There is a lot of industry insider information on oil and Mobil 1 has been tested by many OEM manufacturers and found to come out on top. I don’t want to start a big thing about it and cannot divulge my information's secret sources, but trust me on this one. Granted my test data did not include Valvoline, Castrol or Havoline Synthetic but it did include ALL of the famous synthetics who will remain nameless on the record. In fact, one oil that is highly regarded by list members that is sold as a direct marketed product is in fact nothing but rebottled Mobil 1 for twice the price.
Recently, my buddies at Cosworth report that Royal Purple seems to have good bearing life in the XD Indy engine but for the most part Cosworth uses Mobil One as factory fill. I have had personal good luck with Motul but have no scientific test to prove that it is super good. Adam Saruwatari tells me that Motul has cut his engine wear by 3 fold. Nismo uses Motul in their Group C LeMans car as well as the GT390R. Their testing showed that Motul was excellent.

For gear oil I have found that under racing conditions Redline MTL had superior shifting characteristics but for me has led to faster gearbox wear. On the street this may not be an issue. Nissan Motorsports has had good luck with regular Redline Shock Proof gear oil. Personally I like Motul gear oil. It seems to shift nearly as well as MTL and better than Mobil 1. It has a heavier body so it should have better shock protection for the gears than MTL. Granted this is not based on any scientific evidence, just observations and common sense.
As a non oil related note, Redline Water Wetter is legitimate and really has a reduction of water temp by about 20 degrees F, good stuff.
These super lubes can free up about 1-3 hp, have much better gearbox and engine operation in very cold weather and directly help performance by keeping your engine in top shape for longer.

In my opinion, you still need to change the engine oil at about 3000 miles for best results even with synthetics. I have noticed that the oil pressure at hot idle starts to drop at about 1500 miles with dino oil and 3000 miles with synthetics. I believe that this is caused by the oil’s shearing down under hard use. That’s where my 3000 mile opinion comes from. It is not scientific oil analysis but is based on some data. BTW, I have never had an oil-related failure in any engine I have ever built while following these rules.
The hydraulic lash adjusters on the SR20 engine do not like thick oil. Thick oil causes them to pump up and become noisy. This is especially true of 1991 year engines. For these engines you must run 5w-30 or 10w-30 oil. To get good protection under hard use with these light oils it is, in my opinion, important to run synthetics. These thinner oils provide less viscous drag which can give more hp and better fuel economy.

To my knowledge, the best oil filters are genuine Nissan. This is mostly because of the anti-drainback valve which goes a long way to reduce cold start wear. Also, the bypass valve flow rates and the particle pass through size have been determined by the factory as the best compromise between effective filtering and good flow with low pressure drop. The factory filter also has a thicker shell and better crimping that your typical aftermarket filter so it is less likely to blow off if, for instance, the bypass valve sticks or the oil is super thick on a real cold day.

Headers
Headers are probably the biggest bang for the buck item in the modification list. I have had experience with two different ones both of which offer better construction than what is typical of aftermarket headers. These headers are the Hotshot and the Stillen. Both of these headers are constructed of heavy gauge mild steel that is ceramic coated for appearance and long life. The ceramic coating may aid catalytic light off under cold start conditions which is helpful for OBD-II cars (1995 and later).
Both of these headers have been redesigned since my last update. The Hotshot header has been given larger diameter primaries of 1-3/4", up from the previous 1-5/8". This makes the primaries have less of a neckdown from the exhaust port exit. The material has been thickened to 14 gauge, up from 16 gauge used previously. This cuts down on noise and reduces the chance of the pipes cracking. The new Hotshot gives about 3-5 more wheel hp than the old one according to dyno tests on my car and another closer to stock car.
The Stillen Design has been changed to a short runner 4-1 design. Its power output is better according to Stillen but our testing resulted in nearly the same amount of power as the old design. This is surprising as 4-1 designs generally are better for top end power. The Stillen header still makes slightly more power below 3500 rpm than the Hotshot but the Hotshot outpowers it by at least about 4-5 more top end hp.

Testing on the dynojet show that the Hotshot is good for about 10-15 wheel hp, with highly built cars getting more power and stock cars getting more toward the 10 hp side of the scale, and the Stillen, 8-10. I have personally tested the Hotshot but am relying on other list members data for the Stillen unit. The hp on the Stillen unit peaks about 500 rpm lower than the Hotshot. The Stillen unit boosts bottom end, where as the Hotshot does not come into play until near the torque peak.

If you are going to keep your car pretty stock or really need bottom end torque, the Stillen is a good choice. If your car is modified with camshafts and other bits of hop up stuff the Hotshot is preferable although both perform well in either role due to the forgivingness of the tri-y design.

I have installed both headers and the fit is very good on either. However some list members have reported fitment problems on both. My own personal experience is that both designs fit well. The O2 sensor location on the Stillen unit is a little low for the 98-99 Sentra SE and requires rerouting of the sensor wire which is kinda self-explanatory. The EGR fitting on the Stillen header requires a little fudging to install. This is not a problem but can be a little hard to do for the unmechanical. First you have to loosen the two 12mm bolts that hold the EGR tube to the EGR valve. Then start the big EGR fitting nut on the header side, then tighten the EGR valve nuts a little. Then fully tighten the header fitting big EGR nut. Finally fully tighten the two 12mm nuts on the EGR valve.
The fit of the Hotshot is flawless and does not require much fiddling but if you do have a slight misalignment the above procedure will work also.

They have been some complaints of a rattle or chirping noise that both headers make at approximately 2500 rpm. To me it sounds like a cricket chirping. This is not harmful and not all cars do it. I am not sure of its root cause. The new generation Stillen and Hotshot headers do not seem to make this noise.

The intermediate pipe gasket blows out in short order on both headers. The fix is no big deal, the metal gasket from a 300ZX intermediate pipe will work or applying high temp O2 sensor safe red silicon. Either solution will work well. The Z gasket must be modified so the bolt holes line up but that can be done in seconds with a Dremel tool.

The new Hotshot header solves this problem with the addition of a copper gasket that is just about blow-out proof. You must remember to re-torque the bolts after a few days to allow the gasket to take a set. The new Stillen header has no gasket here so the problem is cured!
The have been a few new companies to come out with an SR20 header recently:

Pacesetter
This header looks like a cheap rip off of the old style Hotshot. It also ripped off the experimental secondary crossover pipe that was featured in one of my SCC articles. Too bad they did not read the article to find out that it did not work! It has thin tubing and is painted with a cheap black paint that instantly burns off and wreaks havoc with your 02 sensor. The flex pipe is of low quality and will not last long. The generally cheesy construction won't last long either. This header produced the least amount of power of all evaluated. It is also the least expensive and does produce a good gain of about 5-7 hp so it might have some merit.

AEBS
This header distributed by Group 5 is a beautifully made full race 4-1 design. It is made of thick wall, ceramic coated steel with nice welds. The AEBS header features a merged collector which is a very nice, powerband-widening feature. The AEBS header produces the widest powerband of all SR20 headers and nearly as much peak hp as the power king, the Hotshot. It has produced as much as 12 wheel hp on some cars. This is surprising as 4-1 designs usually favor the top end of the powerband. In my opinion the AEBS or the Hotshot are the best headers for the SR20 currently on the market. Unfortunately the AEBS has a few minor quirks. It is one piece and more difficult to install unless you have access to a lift and it is lacking any provisions for the EGR system. There are no instructions on how to disable the EGR with the header either so many buyers of this header suffer from driveabilty problems. This is because the disconnected EGR system sucks air making the car run too lean at part throttle. It is very simple to disable the EGR so Group 5 should add the instructions to the header. If you own an ABES header simply disconnect the vacuum line to the top of the EGR valve and plug it.

S&S
The S&S header is a small diameter, long length primary tube 4-1 header. This makes it a good low end and mid range header. It gives a 6-8 hp advantage over a wide powerband. It is also painted which is a disadvantage for looks and life. It is also low in price. It is a good header for the money if you have a stockish motor.

Exhaust Systems
Perhaps the most popular first piece of speed equipment is the exhaust system. On our SE-Rs, the power produced by the exhaust is not always consistent. The gains of a cat back system are not super huge and mostly at high rpm. We have seen gains of 1-3 hp on a typical SE-R although some SE-Rs have gained as much as 8 wheel hp. This is because of variance of muffler design even within one model year. Some Classics and NXen have a washer-like restrictor plate deep inside the muffler. It is impossible to spot by just looking at the car. If you have one of these restricted exhaust systems you can expect a big gain. Unfortunately I do not have a production number or VIN range of these affected cars so I cannot narrow down exactly which vehicles have these mufflers. These cars get about 6-8 hp when you upgrade the exhaust.

200SX owners can benefit from a low restriction exhaust because it will reduce the chance of getting an EGR temp sensor MIL light.
G20’s have a pretty hard to improve upon exhaust from the factory as stock.

GReddy makes one of the best exhausts tested. It has only about 2 psi back pressure and is sort of quiet. I have not tested the HKS or Borla system. The HKS system is supposed to be quiet and the Borla, I’ve heard, is loud. The Borla system also has a restrictor plate. I believe list member Ian Lyn and Shell Black have some experience with a gain in performance after removing the restrictor but the noise level went up also. Merlin Johnson has done extensive testing of different sizes and type of exhaust systems. His testing methodology is very valid and believable.

Quite a few list members have complained that the Stillen exhaust is too loud and rusts out but for the $135 price, I doubt that you could do better at the corner muffler shop. Stillen will most likely come out with a super high quality all stainless system soon.
For you do-it-your-selfers here are some general guidelines. If your engine is stock or if you are limiting yourself to bolt-ons, limit your pipe diameter to no more than 2" or you will lose some bottom end with no applicable gain on top. If you are to the point where you are getting into camshafts and headwork, 2.25"-2.5" from the cat back piping is appropriate. For turbo applications, 3" is the way to go. Try to avoid the typical muffler shop crush bends. You can buy mandrel bends from Kinsler, Burns, stainless, or Bassani. That way your local muffler shop can cut and section these for smooth, non-crush bends in your system.

Do not enlarge your header collector to bigger than 2". I have found that even with my very built 206 hp NA motor that going to a 2.25 collector lost about 6 hp through all of the powerband. After the cat, Shell Black has proved that there may be some power to be found with fairly built NA motors by going to 2.5 inch pipe.

Straight through mufflers are by far the lowest backpressure. The Walker UltraFlow, Apex'i, or Magnaflow are some common ones. Stay away from the generic louvered core glass packs. Even though those are straight through they have incredible backpressure, often more than stock. Look for a perforated core. This is a pipe with lots of small punched holes. The Walker and the Magnaflow mufflers are real loud by themselves and require a pre-silencer.

The Walker Magnum glass pack that most auto parts stores sell here is good for this. It has a perforated core. Make sure that you are truly getting a perforated core! A 24" long Walker with an UltraFlow or Magnaflow creates a system with about 2 psi back pressure that is decently quiet. Dual path, straight through, perforated core mufflers like the Edelbrock should work well also, although I have no direct experience with them. You still need a pre-silencer with them.

The common Turbo-style mufflers are not very quiet and have lots of backpressure, as do the famous Super-Trap and the Flow master, so don’t bother with them.

If you are so inclined, you can do your own testing by welding a pipe bung right after the cat and running a silicon hose to a 0-20 psi gauge in your car. Then you can do 3rd gear runs through the rpm range recording backpressure. Use an old fuel filter as a surge accumulator to smooth gauge readings. Make sure all of the gas is gone! Better yet, use a new plastic one so you won't blow anything up!

Unless you are turbo or nitrous only and are going for the maximum in power, do not bother with removing or gutting your cat. Unless the cat is melted it only has about 1.5 psi of backpressure or less and only affects power by 1-2 hp if that. This is even with a built NA motor. With a turbo or NOS you will lose some power. However we did run mid 12's in Ryan's turbo car with a cat and still passing California's stringent dyno smog test. Remember, this (gutting the cat) is also a big time violation of federal law! Gutting the cat will cause a MIL light on post '95 SE-R’s which is to be avoided come registration time. There is little to be gained with aftermarket cats either, although they are priced well and if you need to replace your stock cat they can be a good value.

Air Intakes
The most common are the JWT POP Charger (POP stands for Performance Optimized Program) and the Stillen which are almost identical. Both are washable and reusable and come with a nicely machined aluminum velocity stack base. Be sure to oil them with K&N oil after cleaning in detergent and water. Don’t go crazy with the oil, a light even coating is fine. Too much oil can contaminate the hot wire in the MAF.

RS Akimoto supposedly make an intake for the Classic but I have never seen one. I think list member Justin Choi might have tested one, verifying it with MAF voltage readings and found it to flow less than the JWT POP.

The HKS powerflow does not seem to filter well. I put one on a white rag and tapped it and lots of dirt went right through it. One of my friends tested one on a flow bench and found it flowed better than the POP, but the Stillen and POP has more than enough flow capacity for our motors and personally I would rather have a filter than a boulder strainer.

I have no direct experience with the GReddy unit but it appears to be made of a fine foam which could filter better I suppose.
Justin Choi has done a lot of filter testing so he would be a good source of information.

You can expect 1-3 hp with these units. If your engine is built, they will not necessarily give you more power but will allow your engine to reach it’s potential by eliminating the intake restriction of the stock air box.

If you want to test your own filters, simply use a multimeter to measure the voltage to the MAF. The higher the voltage, the more air you are flowing. Remember also that temperature and barometric pressure affect the readings so it is important to use only back to back data, not week to week.

Perhaps the most potent air intake is the JWT POP combined with the CAI or cold air intake by Place Racing. I have tested this combo and found up to an 8 hp gain with 3 more peak hp. This part is one of my bang for the buck recommendations. Hotshot is planing a CAI also. It is a nice looking chrome plated part and produces just as much power as the place unit in our testing.

To complement the CAI, I have blocked off the hot water passages in my intake manifold and throttle body. I do not recommend this to anyone who lives where it gets below freezing but for my native sunny California it is OK. The hot water prevents the manifold and throttle plate from icing up under cold conditions. The throttle may also need to be cleaned more frequently as the hot water keeps the PVC blow-by residue crap from condensing on it, as well. On real cold mornings my car has a slight hesitation for about 30 seconds but that is about the only negative effect that I have personally experienced.

Now my car consistently has the same hp, dyno pull after dyno pull. All of you who have done dyno work know that the power drops about 3hp after the first run. The manifold used to get baking hot like the valve cover but now only gets slightly warm to the touch.
The CAI stays cool to the touch even when everything else is burning hot. The CAI can reduce your 1ž4 mile time by close to 2/10ths and make your car a lot more consistent on a hot day. Look at the Mike Mager's 1ž4 mile timeslip table.

ECUs
So far in my experience the only ECU worth considering at this point is the JWT unit. Without slamming anyone, to my knowledge most of the other ECUs on the market have some degree of code mistakes in them. JWT is also the only company to my knowledge at this time that can do reliable programming on Post 1995 OBD-II ECU’s. Without revealing specifics, when examining the code in other companies ECUs, mistakes have been found on just about all of the other manufactures chips. In fact, one famous manufacturer did not change one single bit of code in the program! They merely socketed the PCB, and put an E-PROM WITH THE STOCK CODE IN PLACE! They charge 600 bucks for this piece of crap. They advertise in all the major magazines. I won’t name a name but their ads feature an Eclipse burning out with a sunglassed ponytail looking dude driving it.

If you want to buy another brand of ECU, ask these questions:

Can you raise the rev limit?
Can you eliminate the speed limit?
Can you compensate for larger injectors across the entire operating range?
Can you compensate for a different MAF?
Do you use a Horiba A/F monitor?
Do you understand offsets? Do you know what invalid time is?
Can you program a OBD-II box?

If they cannot answer all of these questions then go to JWT and save yourself some aggravation. I am not paid by JWT so I am not biased, but I'm amazed by their technical competence and I am very hard to impress most of the time. They are also the only tuner in this country who has pushed the limit of SR20 (and Nissan in general) development.

JWT’s ECU significantly improves transient throttle response making the car feel much more lively as well as providing more total advance at WOT. The JWT ECU also leans out the A/F ratio at WOT to an optimal 12.6:1 as the SR20 tends to run rich under these conditions. That’s a reason why the fuel pressure riser does not work too well on our cars.

The JWT ECU adds up to 8-10 hp is some parts of the power band and generally adds 3-5 hp on top. The ECU can take up to 0.3 off your quarter mile time. If you follow the same driving pattern with the JWT ECU, it has the potential for better fuel economy, as well. Premium fuel is required and 15 degrees of set timing is recommended.

For the 200SX, the JWT ECU is almost essential as this car is saddled with an annoying 109 mph speed limiter and a crappy 7100 rpm fuel cut. The ECU really adds to the driving pleasure of these cars.

On an esoteric note, under racing conditions the SR20, especially in an NX, can be subject to thermal runaway. This manifests itself when the air temp gets into the 80’s or if you are drafting in a pack (only do this on the track kids!). The temp goes up which triggers detonation which causes the knock sensor to tell the ECU to pull out timing which causes the temp to rise. This goes on in a viscous loop until the engine overheats big time. Unless you immediately drive slow for a few minutes the engine nukes. In the heat of battle you sometimes forget to check your gauges and boom! I myself blew about 3 engines like this back in my racing days.

Anyway, the JWT ECU limits the amount of knock retard and for the most part, stops this problem. If you are planning to do track events this almost makes the JWT ECU a mandatory item. JWT can also custom program the ECU for high compression and turbocharged applications for a reasonable fee. In fact, if you are going to run 11:1 compression, a JWT ECU is essential if you plan to run on pump gas.

Cam Shafts
So far, the JWT cams are about the only ones that work well on the market. One famous Honda tuner (THE MOST FAMOUS Honda tuner) came up with some cams for the SR20. I observed their mule car in action at the strip. It idled like a bridge ported rotary engine which is to say not at all, the MIL light was on and the thing was running blazingly fast 16 second 1ž4 mile times!

The JWT cams are ground on new genuine Nissan billets so the factory base circle diameter can be maintained. This is important for correct hydraulic lash adjuster function and correct valve train geometry. These are important factors for operating noise and valve train life. Other companies regrind the base circle smaller to get more lift and duration on a stock cam. To do this correctly would require an asymmetrical grind on the lobes to match valve events because of the change in the rockers angularity and motion ratio. Some custom shims under the hydraulic lash adjusters would be needed to maintain proper lash. The wear pattern on the rocker arms would not be optimal either due to their change in angularity. Most companies that do regrinds do not supply an asymmetrical grind or correction shims!
Other common aftermarket problems such as premature wear due to incompatible metals rubbing on each other are eliminated by using genuine Nissan cam billets.

JWT offers two different grinds, a street grind and a race grind. On a stock engine, the street grind is clearly superior. In my testing, the street grind lost no bottom end power (the bigger the cam generally, the less bottom end) and was good for a solid 12 hp. The gains were recorded from 4000 rpm on up and their was no penalty in fuel economy. As cams are the thing that can upset the OBD-II and emission systems the most in general, the engine was tested on a sniffer type smog machine. It put out 6ppm HC and 6 ppm CO at idle. At 3000 rpm the output was 6 ppm HC and 11 ppm CO. This is well under the limit (by almost 10 times!). Although these cams are not CARB approved, the effect upon pollution seems minimal.

I have yet to test them under the new IM240 smog dyno and plan to avoid that for as long as possible! The street cams have a reasonable idle with only a slightly detectable lope. The OBD-II system has remained happy. The race cams did not do too well on a stock engine loosing power except above 5500 rpm. Headwork and 11:1 compression are necessary for these. I have not tested the race grind on a high compression engine yet but will do so soon.

As an update, JWT has released a second generation street cam that has the same 260 degree duration of the previous grind with about 0.030" more lift and faster lobe profiles. This cam was optimized to be the most radical grind for stock springs. This cam works exceedingly well giving my car more than 6 additional wheel hp over the older grind. Shell Black also got about 5 more hp over the older grind on his motor with a stock bottom end.

Also as an update, I have passed the new stringent California dyno test with my fully built motor with flying colors. Ryan's 12 second turbo car has passed also. This proves that clean does not mean slow. It also proves that the government should not concern itself with what's under the hood if what comes out of the tailpipe is clean.

JWT also has a 264 degree and a 268 degree cam for special order only. You must have high compression and headwork to run these cams. My car has gotten about 3-5 more hp above 6500 rpm with these cams but they did cost significant bottom end hp. I have since returned to the regular street grind as this grind is much more torquey and fun to drive.

JWT will also soon release a Pro-Series cam that will have about 264 degrees duration with a whooping 12mm of lift. These will require special valve spring and titanium retainers. With their ultra fast profile, these cams should give near VTEC like top end while retaining reasonable bottom end. To exploit these cams you will need high compression and headwork. I will be testing these cams soon and will report how they work

There are a few new promising cams that have come out since I last updated these pages. All of these cams are of good quality and are pretty expensive.

JUN
I only have anecdotal information on these cams. I have heard through JWT that these cams have very poor idle characteristics and they require a custom ECU to start the car or idle. JWT has had to do custom ECU's for people with JUN cams just so they could start their cars! They are for extreme top end only and are not very streetable. They are ground on new billets. I myself do not have any experience with these. JUN parts are of very high quality and are very expensive.

Tomei
These high quality cams are imported by Group 5. These have shown much promise in Group 5's initial testing with a 12 hp gain to the wheels on Chris Pinthong's bolt-ons-only NX2000. These are also a good quality billet cam but are pretty expensive. Tomei has a very good reputation in Japan like JUN. Look for more testing to be done in the near future.

Comp Cams
Now a major maker of domestic car cams tries to get involved with the import market. Comp Cams are ground on what appears to be JUN billets. They are priced like JUN billets, almost 2X more than JWT cams. Dave Coleman of SCC has tested both the JWT and the Comp Cams and tells me that the Comp Cams feel very mild and do not feel as strong as the JWT cams. He has not dynoed the Comp Cams yet but will soon. Comp Cams has two grinds, a mild and a very mild. Dave told me the very mild is almost not any different from stock and is not worth the effort.

They are a couple of other low buck alternative grinds available for the SR20 that work to varying degrees. The first is the SR20DET "European" grind exhaust cam that Stillen and Nissan Motorsports carries. Although it is pretty inexpensive there are a few problems. The SR20DET uses a mechanical cam with no hydraulic lash adjusters. Mechanical cams require gentle acceleration ramps on the cam lobe flank. When used with the hydraulic lash adjusters in the SR20DE, these flanks keep the valve open a few thousands of an inch for about 10-20 extra degrees of crank rotation. This makes the engine think it has a real big cam at idle. Thus these cams lope like a JWT race grind or worse even though they only have about 8 degrees more effective duration.

For a classic 91-92 SE-R or NX you only use the exhaust cam as the intake cam has the same duration as the DET cam. For the other years you can use both. Supposedly these cams can give up to 6 more hp although I have never confirmed that. Our IMSA race car had the exhaust cam and I could feel a bit more power above 5000 rpm. That engine idled like a fully built motor and I was surprised that we were never protested. I don’t think this cam set could pass a smog test and they would most likely freak out the OBD-II system although I have never tested either.

Another little trick is to use a 91-92 intake cam on a 95+ SE-R. This cam has 16 degrees more duration than the stocker and according to the guys at Nissan Motorsports gives 6 more hp. Ed Wolf and Kurt Sussman run these cams in their 200SX’s. This cam idles fine in this application and should breeze by a smog check.

Do me a favor and DO NOT CALL JWT to debate with Jim or Clark whether these cams are better than their cams. They are not and JWT does not have the time to argue with you.

One of my SCC articles made mention of the alternative cams and JWT was flooded with calls from people wanting to argue that their cam set was not worth the money. The JWT cams have at least twice the potential power gain as the alternatives and whether you think it’s worth the money is up to you as a consumer so don’t waste their time on this point.

[Editor's note from Kurt Sussman. I easily passed a California smog check with the 92 cam. Since this comes up too often, I'll post the numbers here for the 91-93 intake cam, and for the 95 intake cam. In 1994 there were two different intake cams, and I'll post that when I have it in front of me rather than give out misinformation.

Year Ex. Duration In. Duration Intake Opens Intake Closes Exhaust Closes Exhaust Opens
91-93 240 248 13 55 3 57
95-97 240 232 5 47 3 57

The open and close are relative to TDC (intake open and exhaust close) and BDC (intake close and exhaust open).
This is only the cam timing; the lift is greater with the 91-93 intake cam as well (about 15%).

As far as performance, the 91-93 cam will make a difference, but Searl (with the JWT street cams) has never lost a race to me; roll-on or from a standing start. Until early 98, we had identical configurations except for his nitrous oxide kit, which was turned off for most of our races.]

Adjustable Cam Sprockets

Turbo magazine has reported huge gains in Honda and Acura engines with the addition of adjustable cam gears and dyno tuning. In my testing with JWT Street cams, the gains were inconclusive. I tried about 25 different combinations of advancing, retarding, lobe separation angle spreading and tightening with no gains worth keeping over the stock location.

JWT has gone through pains to grind their cams with the proper lobe center straight up. If I got 2-3 more bottom end hp, I would lose 5 on top and vice versa. The best alternative timing was intake cam advanced 2 degrees. This had a gain of about 3 hp in the midrange and 1-2 on bottom end with loss of only about 1-2 on top. This setting might be good for street only driving or autocross where bottom end snap is important. When I deviated by more than 8 degrees of the factory lobe center, the OBD-II system triggered a MIL light.

When building my 11:1 motor the gears were very important, allowing me to correct the cam timing despite milling 0.040 off the deck and head. When you mill things the cam timing retards and you can use adjustable gears to correct it. In fact anytime you mill your head and block like when doing a rebuild, you should use adjustable timing gears to restore proper cam timing.

Stillen claims good gains with the adjustable gears and stock cams but I haven’t tested that myself. The gears are cheap and it would make a good project for someone besides me to do.

JWT and Stillen make gears. The Stillen gears are two piece and are infinitely adjustable. The JWT gears are one piece and are adjustable in 2.5 degree increments. Both are about equally easy to use. The JWT gears are safer by being impossible to slip or vibrate apart and are cheap. The Stillen gears are more expensive, but are real trick looking and can be adjusted in very fine increments which could be an advantage.

If you are going to play with your cam timing I suggest that advancing the intake cam slightly in the 2-3 degree range will most likely have a good effect on bottom end and midrange with only a slight loss of top end. This would be a good place too start.

Headwork
Headwork entails enlarging the intake and exhaust passages in a head to allow for more flow. Good headwork entails subtle reshaping, not just hogging the whole port out bigger. Generally, good headwork leaves the floors of the port alone since most of the flow activity in a port is near the roof of the port. The roof is the outside radius of the bend going to and from the combustion chamber and by inertia, most of the air wants to flow up there. Good headwork usually rounds the floor hump which is the transition from the valve seat to the floor of the port.

Stock, this is usually a sharp edge which causes non-laminar (turbulent) flow separation.
The object of good porting is to increase flow as much as possible while keeping the port volume as low as possible to maintain as high of a flow velocity as possible. Big ports have low velocity at low rpm. This results in a loss of bottom end power due to the lack of energy available in the moving gas column behind the valve. The gas column has inertia which helps fill the cylinder, especially at low RPM. Generally porting your head will cause some loss of bottom end power. Good head porters might be able to increase flow in the head up to 40 percent with no loss in bottom end but that is usually for American Iron heads which are terrible to start with. Modern Japanese engines don’t usually see as big gains as their design is much better to begin with. Gains of 10-20 percent are typical with a modern Japanese motor.

The other major area of headwork flow gain is in the valve job. A large percentage of gain can be in the valve job alone. The best valve jobs are called multi angle valve jobs with three or more distinct angles. The main angles are the throat cut, which is a 60-70 degree cut that blends the port wall to the seating cut. The seating cut is a 45 degree cut which is the sealing surface for the valve. This critical cut should be 0.040-0.060 wide for a multi valve engine like an SR20. Finally there is the top cut which is a 30 degree cut which blends the seating cut to the combustion chamber. The purpose of these cuts is to help the air flow smoothly around the valve, especially when the valve is starting to open or close.

Another valve job trick is to place a 30 degree back cut above the 45 degree seating cut on the valve itself. This helps the air get around the valve better especially at low lifts. A five angle valve job uses two extra cuts to make the transition even smoother. The best valve jobs are radius valve jobs which are a 3 or 5 angle valve
suite

The best valve jobs are called multi angle valve jobs with three or more distinct angles. The main angles are the throat cut, which is a 60-70 degree cut that blends the port wall to the seating cut. The seating cut is a 45 degree cut which is the sealing surface for the valve. This critical cut should be 0.040-0.060 wide for a multi valve engine like an SR20. Finally there is the top cut which is a 30 degree cut which blends the seating cut to the combustion chamber. The purpose of these cuts is to help the air flow smoothly around the valve, especially when the valve is starting to open or close.

Another valve job trick is to place a 30 degree back cut above the 45 degree seating cut on the valve itself. This helps the air get around the valve better especially at low lifts. A five angle valve job uses two extra cuts to make the transition even smoother. The best valve jobs are radius valve jobs which are a 3 or 5 angle valve job which is hand blended after cutting for a perfectly smooth transition. The quality of a valve job is very important because it can contribute up to 50% of the flow gains that headwork will get you.

The best valve jobs are done on a Serdi machine. The Serdi is very high precision which insures that all the valve angles and depths come out equal. Most low price shops use stones. Stones can give a good valve job but the stones must be dressed frequently and dial indicators must be used to insure that the seating surface remains concentric. Stones require a highly skilled person who is conscientious of doing a good job. A butcher can make a big mess with stones.

Unshrouding the valves is an operation where the edge of the combustion chamber is cut back by about 25% of the valve diameter so that the wall of the combustion chamber does not block the air going past the valve into the cylinder.

Polishing the combustion chamber removes sharp edges that can glow red hot and trigger detonation. It also makes it harder for carbon to stick. Polishing should be limited to the combustion chamber and exhaust port. The intake port should be no smoother than 220 grit as maintaining some boundary layer turbulence is good for good bottom end. This turbulence makes the port virtually a little smaller at low flow velocities.

Personally, my belief is that the best head porters for the SR20 head are (Dan Paramore Racing), JWT and B.C. Gerolomy. My own personnel heads are done by DPR and Nissan Motorsports uses B.C. Gerolomy. JWT requires no further introduction here!

Beware of bad headwork. Perhaps the most famous Honda builder who advertises very heavily and sponsors many 10 and 11 second Hondas does awful commercial headwork. I have seen heads from that shop that have huge, lumpy uneven ports. The valve jobs were 1 angle that were cut so deep that the valve would have to rise about 0.040 to get out of the huge crater of a seat cut! Talk about shrouding! The valves were cut so deep that I am sure that the stem tips would have to be faced off to maintain proper valvetrain geometry IF that was done! Perhaps it was the new guy that did these heads but I have seen more than one of them. This shop’s work could not be all bad because of their track record, but I have yet to see a good off-the-shelf head from them. Stuff like this is why many Honda owners complain that their cars end up slower than stock!

My DPR head is a marvel of detail. The head is fully deburred to remove all sharp edges that can cut you during assembly and cause stress risers. Then it was ported by Dan Paramore, keeping an eye for increasing velocity rather than ultimate flow. My objective was to build a torquey engine with no loss of bottom end power. Dan cut down the valve guide bosses where they intrude into the port and smoothed the hydraulic lash adjuster boss where it hangs down into the intake port. This annoying feature was added to the 95 and later low port head.
The valves had the stems turned down for better flow to about 6mm below the valve guide. That way they would block less of the port's cross section area. Dan also reshaped the valves going way beyond the customary 30 degree back cut. Finally Dan swirl polished the valves. Swirl polishing is polishing putting a hurricane looking pattern on the face of the valve. This is supposed to increase flow. The shaping considerably reduced the weight of the valves which should give more rpm headspace before valves float and the classic SR20 rocker arm flies off. To my knowledge DPR is the only company that puts this much detail work into the valves.

The main advantage of the DPR head is Dan’s combustion chamber work. Dan welded up the edges of the chamber to increase the quench. Quench is the area where the piston top comes within 0.040 of the combustion chamber near the edge of the cylinder. The quench zone squishes the fuel air mixture to the center of the cylinder where it can be easily burned. This reduces the likelihood of detonation and increases efficiency. This feature found in all of DPR’s stage 6 heads sets them apart from other tuners and is the reason that I chose them. Increasing quench does raise the compression ratio, so if you are doing pistons and stuff, this must be considered.

The DPR head has a combustion chamber volume of 43cc’s down from the stock volume of 46cc. This raises the CR on stock pistons form 9.5:1 to 10:1. 10:1 is fine on pump gas with the stock or off the shelf JWT ECU. If you are running JWT’s NOS 100 shot ECU the program will have to be changed a little at this CR. If you are running NOS with someone else’s kit, you will have to retard the spark a little under NOS operation. I think around 4 more degrees than you already retard for a 100 shot would be a good starting point although I have not tested that.

If you use the Nissan Motorsports flat top pistons the CR gets close to 11:1. With the planned JWT forged big bore pistons the CR becomes 12:1 which is not streetable but the dome can be machined off to get 11:1. With 300ZX pistons the CR is close to 12:1 but it is easy to machine the domes off of these also. To run 11:1on pump gas requires a special program from JWT. The stock ECU will not work. I do not have much experience with big (100+HP) NOS units and real high compression but you must be careful! More ignition retard and richer fuel mixture are appropriate here. Detonation can result in rapid death! JWT has a 50 shot program for 11:1 available.

My DPR head resulted in a power increase of 10hp above 5000 rpm with no loss of power below that at all! That is testimony to Dan’s skill. The bottom end felt better but the dyno did not register that so I can not claim that. When revving the engine in neutral it was much more responsive to blipping the accelerator pedal. If Dan was to build an all out power head, I feel that their would be another 5 or so hp available at high rpm’s but some low end power would be lost. Dan could have made me some bigger valves but I did not want to pay for that!

The high port classic head (91-93) is superior to the low port head (94-present). The changes to the head were done to improve hydrocarbon emissions. The high port head has long intake ports that bend smoothly around the hydraulic lash adjuster and shoot straight into the cylinder. Unfortunately for pollution's sake this long intake port necessitates having the fuel injectors farther back from the intake valve. This causes the port walls to get wetted with fuel. This fuel is sucked into the engine in-between shifts and on overrun causing the mixture to spike rich.

To eliminate this Nissan went to the current low port design with it’s short intake port and close coupled injectors. Unfortunately the hydraulic lash adjuster must now hang into the intake port obstructing flow. Also the approach angle of the port no longer has such a straight shot into the cylinder either. I believe, although I have not personally tested, that the older high port head is good for about 5-10 more hp than the low port head. To substantiate my theory I have noted that when looking at Japanese Performance magazines, no Japanese tuner uses the low port head in their crazy SR20s.

If anyone has dyno results of a fully developed high port head please submit them to us so we can post them and compare them to project SE-R’s low port head.

As an update, DPR has done some R&D on the high port head and is now able to extract about 25% more flow out of them, up from the 10% increase seen with my head. Dan feels that this could result in 10-12 more hp for his latest creation. Dan has also developed a new valve spring set and new titanium retainers as well as 1 mm oversize stainless valves. George Roffe, Mike Palhs and Ben Benavides have all or some of these latest mods in their motors and we eagerly await dyno results.

Pistons
There are a number of choices here. Nissan Motorsports has the European and Japanese spec pistons that are flat topped (the stockers have a slight dish) that raise the compression to 10:1. This should give about 5 more hp. Nissan Motorsports also has the SR20DET piston which lowers the compression to 8.3:1 for turbo motors. These pistons are available in the standard Nissan size grades in standard bore. This is ok for lower mileage motors but for high mileage motors you might need an oversize piston. Please don’t bother Ron at Nissan Motorsports by asking him if these pistons will work in your motor at xxxxxx miles! Get a FSM and a bore gauge and figure that out for yourself first, then call him! The Nissan Motorsports pistons are cast, but they are a good quality cast piston and can take relatively high amounts of abuse. This means no real high boost levels (much above 14 psi) or huge nitrous hits (certainly not more than 100 hp).

A late model 300ZX VG30DE piston can be used with some modification to the connecting rod. This piston is 87mm up from the stock 86mm which will give you 2045cc. The small end of the connecting rod must be ground down by 0.010 on either side to give the rod enough running clearance. I did it on a belt sander being careful to mike the rod several times along the way. Be sure to put a slight chamfer on the pin bushing after you are done. I used a deburring tool and polished the edge with some 400 grit wet dry paper and some honing oil.
The VG30DE piston will give you 11:1 on a stock type combustion chamber. On a DPR stage 6 head you must mill off the dome of the piston. This can be easily done on a lathe or mill by any competent automotive machine shop. Mill the dome completely off making a flat top piston. The VG30 DE piston is a high quality cast piston.

JWT will soon release a forged 87mm piston. It will have a slight dome to give 11:1 with a stock configuration head. The dome could be removed for a lower compression. Forged pistons are much tougher and can withstand detonation and stress much better than a cast piston. The JWT piston will use a high silicon alloy which allows tight piston to wall clearances and also has a super strong, lightweight tool steel piston pin.

You might be wondering if forged or cast pistons are better. Cast pistons are made by pouring molten aluminum into a mold. Nissan cast pistons are pressure die cast in an inert gas atmosphere. Pressure casting results in a stronger, denser part with less inclusions than the low tech pour in the mold method. A genuine Nissan cast piston is dimensionally more stable than a forged piston and can run extremely tight piston to wall clearances, as little as 0.0004"! Tight piston to wall clearances help with oil consumption issues, hydrocarbon emissions and piston ring life. The bad thing is that cast pistons are more brittle and tend to crack ring lands under detonation.
Typically the number two ring land cracks on Nissan pistons. Under lots of detonation, nitrous or boost, the pin boss of the cast pistons can crack also. Usually this incident claims everything south of the intake manifold! Granted Nissan cast pistons are a high quality, strong cast piston and most list members, even you hard core ones will not get to this point.

Forged pistons are made by smashing a heated billet of aluminum into a forming die with extreme force. This results in an compressed microstructure with good grain flow in critical areas such as the pin boss. Forging alloys are also ductile and strong in nature. Forged pistons offer superior strength and toughness resisting fatigue and cracking. Forged pistons can be made thinner and lighter due to their superior strength. Forged pistons can take detonation much better than cast pistons.

Forged pistons can also handle the strain of high boost and Nitrous. All racing pistons to my knowledge are forged. The disadvantages of a forged piston are that it must run a larger piston to wall clearance than a cast piston. This is due to two reasons. The first is that forging alloys grow more with heat, the second is because of the violent nature of forging; a forged piston has more internal stress and is not as dimensionally stable.

Old school forged pistons needed to run as much as 0.009" piston to wall clearance. These pistons sound like a diesel engine, rattling like crazy. Due to recent advances in piston alloys and skirt design, modern forged pistons can be run as tight as 0.006-0.003".
Pistons that run on the high side of this scale will still rattle. Ones on the low side can be fairly quiet. Usually this has to do with the silicon content of the alloy. Low silicon pistons are the ultimate in strength and toughness but require big clearance because of the metal’s high expansion rate. These are pistons used in top fuel drag racers or the real nasty turbo Hondas. High silicon pistons run tighter clearances and are slightly less ductile but are still much stronger than cast pistons.

I would not recommend a low silicon piston for street use no matter what. It would be noisy, wear rings quickly and be a oil burner after not so many miles.

JWT pistons will be high silicon and can be run at 0.003". The are almost as quiet as stock pistons. If the skirts are coated with a dry film lube like Swaintech poly moly, bringing the clearances down to 0.0015 or so, they should be as quiet as stockers.

If you are going to push the edge with turbo boost, nitrous or are going to do some real racing, forged pistons are the way to go.
By going to 11:1 CR with pistons, my engine gained at least 10 hp across the board, from off idle to the fuel cut. High compression was one of the best all around mods so far. High compression increases thermal efficiency and lowers the BSFE (Brake Specific Fuel Consumption). My car gets a consistent 29-33 mpg despite spirited driving. As I have stated before, a JWT ECU is mandatory with 11:1 to prevent engine-destroying detonation regardless of piston type.

I may be trying to build a big gun engine within the next year or so. I will sleeve the block so a 90mm bore will be possible. Forged, slightly dished pistons will be used for an 11.5:1 cr. Then a KA24 crank with a cut down snout and welded up thrust surfaces will be used to bore and stroke the engine to 2400cc. Amazingly the KA24 crank almost drops right into an SR20!

JWT pro-series race cams will be installed. More displacement can mask some of the bad characteristics of big camshafts like lack of low end power and lumpy idle. My goal is 185 wheel or 215 crank hp with even more low end torque

Crank, Rods, Bearings, Machining, Balancing, Coatings, Manifolds, etc.
The SR20 is blessed with a near bulletproof bottom end. The crank and rods are forged steel unlike the typical cast iron that most American motors run. The rod bolts are a beefy 9mm. The crank features rolled fillets, an uncommon strengthening operation used usually only for racing or heavy duty parts. The rod bolt registers are spot faced, leaving a generous amount of metal around the bolt holes, a traditional weak area in connecting rods.

Both the crank and rods are subjected to a severe shotpeening from the factory. Shotpeening microforges the surface of the part making it stronger and harder while leaving the interior soft and ductile. This step can improve the fatigue strength of a part by over 100% and is usually reserved for high end racing parts. The main caps are tied together with a stiff aluminum girdle which improves bottom end rigidity significantly. This feature is usually found in all out race motors. These design elements produce an engine that is nearly bulletproof. I have seen motors with over 100,000 miles on them with the factory honing marks still visible in the cylinder bores! The number of list members in the 100,000 Mile Club is a testament to the durability of the SR20.

The only catastrophic engine failures that I know of (Tom Paule and Zak Nilsson) were the result of low oil levels with spun bearings. Chuck Nibbana’s super trick engine also mysteriously disassembled itself but that might have been because of improper clearancing. I have screwed up 3 SR20’s myself but that was the result of not watching the temperature gauge while racing IMSA and SCCA. Gross overheating was an understatement. Clark Steppler of JWT has never seen a catastrophic failure that could be traced to the engines fault, either.

The same bottom end of our US model SR20DE also is used for the turbo SR20DET so we have a lot of headspace before we start to challenge the strength of the bottom end. The stock parts can be used until the hp climbs well into the 200’s. So bring on the NOS, turbo boost and compression! We have run Ryan Besterwich's turbo car (formerly Searl's) as high as 20 psi of boost which pushed the car into the low 12's with a completely stock bottom end with no harm. His car has over 80k miles on it and is still going strong. I estimate that his car is putting out over 400 hp with the stock bottom end! If detonation can be controlled the stock bottom end is pretty strong!
If you are building a hot street SR20, I recommend leaving the rods alone. By doing the traditional beam polishing you will be removing the factory tough shotpeened surface. If you reshotpeen the rods after polishing they will have to be resized and straitened as proper shotpeening distorts the parts. It is not likely that a local shotpeener can do as good of a job as the factory either. The same goes for the crank. It won’t hurt to do these traditional race prep steps but it is probably not worth the effort on the SR20.

If you do prep and re-shotpeen your rods make sure that the piston wall oil squirter hole does not get blocked or peened over. This hole sprays oil on the thrust side of the cylinder helping with lubrication and keeping the engine quiet.

In fact, I might say that no matter what you do to build a naturally aspirated motor, if you keep an 8000 rpm or less redline, you don’t need special rods.

I do not have any personal experience with the well-publicized-by-Turbo-magazine, Metalax treatment process but have heard good things about them. I do have plenty of good personnel experience with shotpeening solving many parts breakage problems. Recently I have had very good luck with cryogenic treatment preventing breakage of drivetrain parts with high powered SE-Rs and I am currently building a VG30DE motor using cryogenic treating extensively.

For extreme use in killer turbo motors running near 20 psi of boost or for those of you running 100+hp NOS units, racing rods may be in order. JWT can get Crower rods. I believe these rods are machined from 4140 billet. I am using Cunninham rods in another engine. These rods are a little lighter than Crower and seem just as high quality. Carrillo makes excellent rods also but they would be a custom application and take 6-12 weeks for delivery. These racing rods do not have the oil squirter hole in them which could result in slightly shorter life of rings and pistons.

The rods and pistons should be balance to within 1ž2 gram and the crank dynamically balanced. I have found that Nissans are generally within 1 gram from the factory! A typical American car is usually off by as much as 5-12 grams! I like to polish the journal surface of the crank. You can have a local machine shop do it using the lightest grit of polishing paper belt. You don’t want to remove so much material that the crank dimensions change, just reduce the RMS of the surface by knocking off the peaks of the machining marks.

The factory Nissan bearings are strong and durable. I recommend running bearing clearances in the middle of factory spec on a typical street motor. Clearances on an all out racing motor can be set on the looser side of factory. When buying bearings, Clark Steppler of JWT has told me (and I have also observed) that if an engine has any kind of mileage on it, the next tighter bearing size can be used other than the number that is stamped on each journal of the block and crank. Remember to mike and bore gauge all the journals to confirm proper dimensions before assembling. If you don’t have access to these , at least use plastigauge to make sure that you are in the ball park.
When boring or honing a block, it is better to use a torque plate. A torque plate simulates the stress of a cylinder head being bolted on your block. With a block that was machined with a torque plate, the bores will remain straight when the head is bolted on. Usually the block will distort and the cylinders will become out of round accelerating wear and reducing the effectiveness of the ring seal when the head is bolted on. Granted this is a small difference but is important if you want to build a good motor. For this reason the main caps should also be bolted on and torqued when the block is being machined.

Boring and honing should be done on a Sunnan CK10 machine. This is a high precision machining center that makes the honing of a good round bore almost idiot proof. Since today’s low tension rings require a smooth surface to seat properly, plateau honing after the dimensional honing reduces the RMS of the surface for lower friction, better sealing, less oil consumption and longer life. JWT has pioneered the use of plateau honing on the SR20 and has the process figured out for a smooth bore surface that will still allow the rings to seat. When properly machined with a torque plate and plateau honed, it is possible to have an engine that leaks down at 2% or less! [Editor's note: Nissan specifies that up to 10% is acceptable; most SR20DEs leak down at close to 5% (source: senior mechanic at Falore Nissan)]
JWT is the only company in North America to my knowledge that has a torque plate for an SR20 engine. JWT is most likely the best company to machine your SR20 block. JWT can also machine your block for SR20DET piston coolers. Piston coolers are oil jets that squirt oil onto the underside of your piston dome to help lubricate the piston pin and to help keep the piston cool. As aluminum starts to lose strength above 350 degrees, piston coolers can help quiet a bit. The SR20DET uses piston coolers as does the 11:1 cr SR16VVL N-1 spec motor. This Japan market hyper motor makes 200 hp from only 1600cc!

Since Nissan feels that this 11.6:1 motor needs piston coolers it is probably a good idea to put them in yours. The piston coolers have a spring loaded valve so they only open at higher rpms to maintain good oil pressure at idle and in bumper to bumper traffic. In my motor there was a noticeable drop in water temp once the coolers were installed. To my knowledge JWT is the only company that has the fixturing to machine a block for these piston coolers. Talk to Clark Steppler at JWT for machining.

When building a killer motor it is a good idea to replace the main cap bolts with the ones found in the SR20DET. These are about 20% stronger. Nissan Motorsports stocks these.

I am a believer in special coatings. Coatings are great for adding to reliability or to help control factors such as heat so special tolerances can be used. At the advice of Nissan Motorsports I used Swain tech coatings. Unlike the other to-be-named coating houses that use off the shelf coatings, Swain develops their own in-house coatings that are much more sophisticated. Where most other companies have a one layer coating, a Swain coating might have 3-4 different functional layers. I use Swain tech gold thermal barrier coating on my pistons. This is a severe duty 3 layer thermal barrier that reduces heat transfer by about 25%. This helps protect them from detonation and Nitrous abuse. By keeping the heat out of the pistons, I can run an amazingly tight piston to wall clearance of 0.0004 inches. That is 4 ten thousandths of an inch! My engine does not burn oil at all even with water-thin 5w30 Mobil 1 oil.

I also use Swain poly moly dry film lubricant piston skirt coating. This coating uses molybdenum disulfide and tungsten disulfide for a dimensionally stable heat conducting matrix. This is better than the teflon that most other companies use because teflon distorts and creeps under load. Teflon is also a heat insulator. Since the pistons cool themselves by conducting heat through the skirts, it is not to good to insulate them. Poly Moly can help tame the clatter of forged pistons. Poly Moly also tightens your piston to wall clearance by 0.0014 or so inches so you may have to compensate in your bore machining for this added clearance.

The guys at Nissan Motorsports tell me that poly moly significantly cuts piston and cylinder wall wear. Next time I go through the motor I will probably coat the valves and combustion chamber to protect them also. One of my friends had a 20 degree drop in water temperature, 300 rpm faster turbo spool, and 300 degree higher EGT's with a fully Swain coated motor. On my hopefully 700 hp Twin Turbo Z motor, I will be using Swain coatings on just about everything from the bearings to the undersides of the pistons. I believe that these coatings are like a cheap insurance policy.

Swain also makes slippery flow improving coatings, heat dissipation coatings, wear resisting coatings and stealth coatings that are not detectable!

List member Kurt Sussman is planning to build, test and manufacture a short runner intake manifold. When running computer simulations with Dynomation’s software, gains of up to 15 hp above 5000 rpm with losses of only 2-3 hp below 3000 were noted. This seems to indicate that Nissan sacrificed lots of top end power to gain a little below when designing the manifold. I noted that Nismo’s race manifold as well as GReddy and JUN’s race manifolds have short runners. The 196hp SR20VVL also has a short runner manifold. As these manifolds are designed for the RWD S13 and S14 chassis, Kurt took it upon himself to design one for the FWD cars. Yeah Kurt! We will be posting the results of this manifold as Kurt get around to it. However, he just had a baby girl which should postpone his manifold development for quite a while. If anyone else wants to do it, let me know

Extrude Honing
Extrude Honing is a process where an abrasive putty is forced through your manifold or other difficult to port areas at a high velocity, removing material. Extrude Honing is great because it can port areas where it is otherwise impossible to do so, like in the middle of your very long runner manifold or deep inside your manifold's plenum chamber. Extrude honing is also very good at equalizing manifold runner flow.

Smaller more restrictive areas in the head act like a venturi so the putty flows faster there. Faster flow equals more cutting action and thus the Extrude Honing process by nature removes material where it's needed the most. This cutting mechanism is very good at producing runners that flow equally.

We tried Extrude Honing the manifold on project SE-R. This is the shorter runner manifold for the low port, post '93 head. The end results were mixed. Although the Extrude Honing performed extremely well on the flow bench, as the folks at Extrude Hone said it would, the dyno tested power increase was minimal.

On the flow bench the Extrude Honed manifold flowed a whopping 15% more than the stock manifold. Runner to runner flow which varied by about 13-14 cfm per runner stock had the variance cut down to less than 1 cfm per runner. With these excellent results we eagerly bolted on the manifold. By a SOTP evaluation, it was thought that the manifold improved throttle response and top end power. When the manifold was dynoed, the results were disappointing as the motor only gained one peak hp while losing one hp below 5000 rpm. Past the power peak until the fuel cut, the motor gained 3-4 hp. Although these gains seem small, they were repeatable through 4 back to back dyno pulls.

This shows that increasing the intake manifold's flow does not help too much even on a fairly modified SR20. Obviously the manifold is not a major choke point in the induction system. On an engine with race cams the gains would be larger as our manifold seemed to do the best at the very top end. Our computer simulation still indicates that a shorter runner manifold will help quite a bit. This is because the shorter runners will resonate at a higher rpm, improving cylinder filling through passive supercharging. This resonance tuning does not rely on pure steady state flow gains like extrude honing does. We are eagerly waiting for Kurt Sussman's short runner manifold, though we may have to wait until his baby graduates from high school!

Since the classic or pre-94 manifolds have longer, more curved runners, they have greater internal scrubbing losses due to the increased surface friction of the longer, deeper boundary layer (the still air near the runner's walls that does not contribute to flow). Perhaps this process would be more beneficial on one of these manifolds.

So in short, if you have an engine with just the easy bolt on parts, the Extrude Hone process most likely will not help much if at all. If your engine is really built with cams, headwork, compression, etc. and you are interested in getting every bit of power, you might consider it, but it would be a finishing touch type of modification.

If you have a killer high revving NA or high boosting turbo motor it might definitely be a plus.

Unorthodox Racing Underdrive Pulleys
Being skeptical of the claims for big horsepower on the Unorthodox Racing web site, we ordered up a set of their underdrive pulleys to do some extensive dyno testing. Joe at Unorthodox told us via a phone conversation that he felt that the pulleys would be good for about 5 hp on the SE-R.

When received, the pulleys were obviously CNC machined from billet aluminum and anodized a nice shade of blue. They were significantly lighter than the stock bits. We measured the TDC mark in relation to the keyway to make sure that the TDC mark was right on. It was. Unfortunately the TDC mark is the only one on the pulley so timing the car without a dial back timing light is impossible. Not a big deal for us as we have one of these timing lights but possibly a problem for the average joe. We suggest that Unorthodox add marks in 5-degree increments to the pulley instead of just a TDC mark.

To install the pulleys, we removed the passenger side wheel and wheelwell splash shield, exposing the front of the engine. An air impact was then used to remove the main pulley nut. The 10mm bolts holding the water pump pulley were removed with the belt still in place to prevent them from spinning. Two 6mm bolts were used in the existing holes to lever the stock main pulley off the crank. I don't really recommend doing this as it is real easy to punch a hole in the front cover this way. Use a puller or back up the bolts with a peice of thick metal to prevent damaging the cover. To get enough clearance to completely remove the main pulley, the passenger side motor mount had to be loosened and a jack placed under the motor to lift it slightly shifting the engine enough to get the pulley off. The new pulleys were installed in reverse order.

The stock belt for the water pump and AC compressor could be retained but a shorter belt was necessary for the alternator and power steering. We used a Bando p/n 6PK-1000 belt to replace the stock belt which was purchased from World Pack, a nearby parts house (1-800-733-2277). Bando makes genuine Nissan belts so I figured the quality of this replacement belt should be good.

After running the car, my SOTP estimate of power gain was small, about 1-2 hp. The engine felt more eager to rev and there was less drag when the AC compressor kicked on. I plugged in a CONSULT to test for charging function and overheating. The battery output stayed above 12 volts with all electrical accessories going full blast, including my aftermarket PIAA lights and 200-watt stereo cranking. When I made the electric windows go up and down at the same time the voltage dipped to 11.9 volts but I seriously don’t think that is a realistic estimate of potential power demand. I don’t think you would be caught in a very hot, very humid, foggy rain storm at night while broken down on the side of the road, engine at idle with every single light on, fogging up the windows while making out with your girl (or guy) stereo blaring and get a bug to roll the windows up and down to the beat of the music while waiting for the tow truck! If you do this frequently you may discharge your battery with the underdrive pulleys.

I tried to make the car overheat in bumper to bumper traffic on an 80-degree day, plus high speed cruising and free revving the motor to 7000 rpm for a few minutes. The coolant temp never went above 94 degrees C. I also did some violent slalom maneuvers to test the power steering. There was no sign of power steering pump up. The AC was perhaps a little less effective but it was hardly noticeable. After all this testing I conclude that the pulleys are at least safe. I think that under racing conditions the car may even run cooler as the stock water pump is prone to cavitate at over 6500 rpm.

Some list members have been concerned that the underdrive pulleys lack of an inertia ring as the one in the stock pulley could have some negative effects on motor life. I believe that this is not true. The SR20, unlike most domestic motors, has a fully counterweighted crankshaft and is internally balanced. It does not rely on a counterweight on the front pulley and flywheel to give dynamic balance like Ford or Chevy engines. Highly modified domestic motors are internally balanced at a great cost but us Nissan owners get that stock! I believe that the damper on the stock pulley is mostly to damp out accessory drive noise. With the underdrive pulley in place there actually seems to be less idle and high rpm vibration. I could not detect any increase in accessory drive noise but my car is sort of loud.

The next step was the acid test on DPR’s Dynojet chassis dynamometer. Amazingly the pulleys were good for a maximum of 6 hp over stock! The increase was about 2 hp at 2000 rpm rising in proportion with rpm to 5 hp at the power peak to 6 hp at the rev limit. The smooth gradual increase of power deceptively made the SOTP feel less. Normally most mods put a hump somewhere in the powerband that is easy to feel. Not so for the underdrive pulleys. Their seamless addition of power was very hard to feel. Being a skeptic we ran the car three more times to see if it was a fluke. All three runs yielded the same results.

At $189 list price these pulleys get our bang for the buck award! There are often group deals for less on the se-r mailing list.
Unorthodox has introduced a 4 piece pulley set that includes the power steering and alternator pulleys also. I have tested these and found perhaps a small 1 hp gain over the old 2 piece set. Shell Black has found a larger about 2-3 hp gain in his testing. Surprisingly I can feel a larger SOTP difference with the 4 piece set. Taking our suggestions, Unorthodox has improved the pulleys by adding a steel sleeve under the front main seal for longer life and is now adding all of the correct timing marks. The new product is even better.

We have also tested the pulleys extensively on the racetrack at temperatures over 100 degrees and found that the pulleys significantly reduce water pump cavitation induced overheating. Despite thrashing on a road course which is much harder on a motor than drag racing, we have yet to see any increase in wear on the motor.
suite...


Big Bore Throttle Bodies and MAFs
I recently tested the RC engineering big bore throttle body. This throttle body is 64mm vs the stock 60mm. The workmanship and attention to detail are superb. The throttle body casting is honed to tight tolerances so a good idle can be maintained and the throttle shaft is aerodynamically profiled with streamlined button head bolts that are staked, much like OEM. Although it felt like it was giving a lot more power in my SOTP evaluation, on the Dyno no power increase at all was registered just as I had previously predicted. My theory is that it improved throttle response so much that the engine seemed a lot more powerful. However, I think this mod is worth while just because of the vast improvement in feel and response. Perhaps with more mods, the engine will need the additional flow and the TB will actually help.

I also tested using a big 80mm MAF from a late model Maxima using a custom programmed JWT ECU. My engine is getting close to the point where it can top out the stock ECU but not quite yet. Even through the Maxima unit is nearly 45mm larger than the tiny stock MAF, I did not gain any power except for about 2-3 below 4000 rpm! My theory on this is that the larger hole helped the CAI resonate better at lower rpm. I don't think bigger or bored out MAF's like Stillen sells are worth it unless you are turboed or your engines are modified to the point where they can pull more than 5.15 volts on the airflow meter. This is the point where the stock MAF is maxed out.

Spark plugs and Ignition systems

There is a lot of controversy on the list on what is the best, most appropriate sparkplug for our cars. My opinion is yet another one but at least it is backed by years of racing experience and recent dyno testing.

Heat Range of plugs
Sparkplugs come in many heat ranges. This is so the plug can be matched to the type of use an engine receives. For low speed, short hop driving, the plugs electrodes must stay hot enough to burn away and self-clean fouling carbon deposits. For this type of driving a hot plug is needed. For high speed racing at high rpm, the plug can become too hot and glow like a diesel glowplug causing pre-ignition and detonation. This can quickly destroy an engine. To prevent this a cold heat range plug is needed.

The length of the insulator of the center electrode determines a plugs heat range. You can tell a cold plug from a hot plug by looking at the center electrode’s insulator. If the porcelain insulator is short, it is a cold plug. If it is long and extends deeply into the steel shell of the plug, it is a hot plug. This is because a cold plugs short center electrode has a short path to conduct heat out of the electrode. A hotter plug has a longer path and dissipates heat more slowly.

Most listmembers seem like they are unaware of matching the spark plugs heat range to the type of driving that they do. I wince when I think that many are squeezing nos or pumping turbo boost with the stock hot plugs.

In my opinion the best spark plugs for the SR20DE and DET are the stock Genuine Nissan NGK platinum plugs. I like a decent platinum plug. Platinum is a noble metal with a high melting point. Being almost inert, it is highly corrosion resistant even at high temperatures. That is why a platinum plug lasts about 3 times longer than a conventional plug. When used in the plug's electrode it resists erosion much better than steel.

Stock Nissan plugs have platinum in both the center and ground electrode for really long life. Most aftermarket platinum plugs only use platinum in the center electrode. I prefer for most engines, even the stock ones, to run the PFR6B-11 spark plug. This is the middle heat range for the NGK plugs. SR20 powered cars come with PFR5B-11 plugs, which are one heat range warmer. Originally when the SR20 was first introduced, the cars came with PFR6B-11s but they were fouling out during port storage where the cars are continuously being started, moved a few feet, and shut off. The countermeasure to high warranty on low mile sparkplugs was the switch to the hot plug.

The PFR6B-11 works well on high compression, turbocharged or NOS powered cars. For running extreme boost (more than 18 psi), a big shot of nos (more than 100 hp) or really high compression (more than 11:1) the cold PFR7B-11 plug is necessary. This plug will be on the edge of fouling during regular day to day driving so it can be considered a race only plug.

The SR20 has a shallow included angle of the combustion chamber. This makes for a quick burning, detonation-resistant chamber. I have also found that shallow included angle chambers for the most part do not like extended tip plugs. When experimenting with extended tip plugs I have found that the engine loses about 3-4 hp across the board. Many aftermarket plugs are extended tip. The theory behind extended tip plugs is that the extended tip puts the electrodes in a more turbulent section of the combustion chamber, thus helping them stay clean of fouling.

In the SR20 an extended tip plug puts the electrode too close to the piston dome screwing up flame propagation, thus losing power. This is important to consider if your are deviating from the Stock Nissan recommendation. Make sure that the tip of the plug that you are buying does not extend further than the stock plug’s tip. If you are running flat top or domed pistons, this is even more critical as the tip of the plug is even closer to the piston dome.

The SR20 has a powerful stock ignition that can fire through turbo boost and NOS. Gap the plugs at 0.045". If you experience misfire under squeeze or high boost (and the rest of the ignition system is in good condition, like the cap, rotor and wires) you can close the gap down to as small as 0.020" to prevent it. Go down in 0.005" increments until the misfire stops. Higher cylinder pressures cause by big NOS or high boost requires smaller gaps with the stock ignition. The smaller gap loses a little power but this trick can tide you over until you can get that snazzy turkey roaster ignition.

High Power Ignition
I haven’t run across a SE-R that has needed this yet but I suppose that over a 100 shot of nos or 18 psi of boost might need a high power ignition. Jacobs ignitions are crap. I would not bother with them. I prefer an MSD 6A or better unit. I have never needed an MSD on an SR20 yet but I have had very good luck with them on other cars including racecars. The Crane Hi 6 has gotten rave reviews also but they seem prone to burning out (two of my friends have been stranded because of a burnt out Hi-6). These ignitions are very powerful, capable of firing the spark plugs for over 30 degrees of crank rotation. Just the thing for high cylinder pressures.

I have a Nology coil booster on my SE-R. It seemed kind of hokey but I installed it. It has allowed my car to run smoothly even with the plug's electrodes completely burned off. When the coil booster was unplugged the car would barely run so I guess it works well. The Nology coil booster is the only easy way to hop up a 200SX’s ignition as the coil is an integral part of the distributor.

I believe I have found the limits of the stock SR20 ignition system. On Ryan's turbo car, when exceeding 10 psi of boost we developed a misfire which required that the plug gap be closed to 0.020". Even this was only good to 14 psi before misfire started again.
On my 11:1 compression NA motor misfire was happening until I closed the gap also.

So on really built cars I now recommend the MSD 6A or SCI ignition system. On 95 and later cars with an internal coil, MSD makes an external coil conversion kit for Hondas that also works on our cars. Just be sure to cut the primary conductor from the stock coil and fill the resulting hole in the distributor cap up with silicone or some of the extra power from your new coil will be wasted.

As a note, these ignition systems don't seem to work too well with Nology wires. I use either stock or NGK wires.
These high power ignitions will not give you much more power but they will eliminate frustrating misfire and help starting and low speed driveabilty.

Bosch Platinum
I hate these plugs. They have a weird center electrode that is flush with the insulating porcelain. What happens is that this electrode quickly erodes so it ends up being a depression in the porcelain, making the spark shoot out of a hole. Sparks like to propagate from sharp edges so I think they have a hard time getting out of this hole.

These plugs will absolutely not work for long in high compression, high rpm, boosted or NOS applications. The are marginal on a stock engine. In my experience they work OK for a few thousand miles then start to idle roughly and on modified engines misfire under load. It amazes me that an OEM level supplier like Bosch can make pieces of crap like these.

Some listmembers have recently dyno tested these plugs on stockish engines and have found them to be OK. This included some used plugs that were at least 20k miles old. My personal opinion is that these are pretty bad for most stock motors. The VG30 in my Pathfinder will barely run with these plugs. Kit Wetzler also experienced poor driveabilty in his NX2000 with these plugs.

[ Ed note: This is Mike's opinion of these plugs based on his personal experience. ]

Bosch Plus 4
Although I have not had any experience with them, Chris Pinthong and Dave Coleman have tested them and found them to work well. These plugs have an unusual design with 4 ground electrodes much like a rotary engine plug. Hopefully they are much better than the regular Bosch Platinum.

NGK V plugs
These work fine, just change them frequently. Be sure that the tip does not extend further than the stock plugs.Split Fire
I call these Miss Fires. They have an extended tip that the SR20 hates. The dual ground electrodes may have some merit by creating more sharp edges for spark propagation but this is moot when the extended tip causes hp loss.

Champion, AC and others
I don’t have any experience with these. Make sure the heat range and tip length is appropriate for our motors. I think that these brands have some premium labels that have unique electrode configurations to have more sharp edges for spark propagation. Some list members have had good luck with these.

The main thing to remember with SR20s is that the plug’s tip length must be close to the stock plugs or power loss will result and the heat range must be appropriate for the intended end use or engine-destroying detonation may occur.

___

AAC de P10gt sur une P11 testé sur un banc par tibo

aac d'admission de P10 gt sur P11gt au banc sur toute la plage de régime
Bonjour,

Quelqu'un aurait-il conservé les Schéma ECU et coupes moteur de la première page ? (datant de 2005, les hebergeurs images ont fait du propre... ^^)